Search Results

Now showing 1 - 3 of 3
  • Item
    Elastoresistivity of Heavily Hole-Doped 122 Iron Pnictide Superconductors
    (Lausanne : Frontiers Media, 2022) Hong, Xiaochen; Sykora, Steffen; Caglieris, Federico; Behnami, Mahdi; Morozov, Igor; Aswartham, Saicharan; Grinenko, Vadim; Kihou, Kunihiro; Lee, Chul-Ho; Büchner, Bernd; Hess, Christian
    Nematicity in heavily hole-doped iron pnictide superconductors remains controversial. Sizeable nematic fluctuations and even nematic orders far from magnetic instability were declared in RbFe2As2 and its sister compounds. Here, we report a systematic elastoresistance study of a series of isovalent- and electron-doped KFe2As2 crystals. We found divergent elastoresistance on cooling for all the crystals along their [110] direction. The amplitude of elastoresistivity diverges if K is substituted with larger ions or if the system is driven toward a Lifshitz transition. However, we conclude that none of them necessarily indicates an independent nematic critical point. Instead, the increased nematicity can be associated with another electronic criticality. In particular, we propose a mechanism for how elastoresistivity is enhanced at a Lifshitz transition.
  • Item
    Long-range magnetic order in the ~S=1/2 triangular lattice antiferromagnet KCeS2
    (Amsterdam : SciPost Foundation, 2020) Bastien, Gaël; Rubrecht, Bastian; Haeussler, Ellen; Schlender, Philipp; Zangeneh, Ziba; Avdoshenko, Stanislav; Sarkar, Rajib; Alfonsov, Alexey; Luther, Sven; Onykiienko, Yevhen A.; Walker, Helen C.; Kühne, Hannes; Grinenko, Vadim; Guguchia, Zurab; Kataev, Vladislav; Klauss, Hans-Henning; Hozoi, Liviu; van den Brink, Jeroen; Inosov, Dmytro S.; Büchner, Bernd; Wolter, Anja U.B.; Doert, Thomas
    Recently, several putative quantum spin liquid (QSL) states were discovered in ~S=1/2 rare-earth based triangular-lattice antiferromagnets (TLAF) with the delafossite structure. A way to clarify the origin of the QSL state in these systems is to identify ways to tune them from the putative QSL state towards long-range magnetic order. Here, we introduce the Ce-based TLAF KCeS2 and show via low-temperature specific heat and μSR investigations that it yields magnetic order below TN=0.38 K despite the same delafossite structure. We identify a well separated ~S=1/2 ground state for KCeS2 from inelastic neutron scattering and embedded-cluster quantum chemical calculations. Magnetization and electron spin resonance measurements on single crystals indicate a strong easy-plane g~factor anisotropy, in agreement with the ab initio calculations. Finally, our specific-heat studies reveal an in-plane anisotropy of the magnetic field-temperature phase diagram which may indicate anisotropic magnetic interactions in KCeS2.
  • Item
    Piezoelectric-driven uniaxial pressure cell for muon spin relaxation and neutron scattering experiments
    ([S.l.] : American Institute of Physics, 2020) Ghosh, Shreenanda; Brückner, Felix; Nikitin, Artem; Grinenko, Vadim; Elender, Matthias; Mackenzie, Andrew P.; Luetkens, Hubertus; Klauss, Hans-Henning; Hicks, Clifford W.
    We present a piezoelectric-driven uniaxial pressure cell that is optimized for muon spin relaxation and neutron scattering experiments and that is operable over a wide temperature range including cryogenic temperatures. To accommodate the large samples required for these measurement techniques, the cell is designed to generate forces up to ∼1000 N. To minimize the background signal, the space around the sample is kept as open as possible. We demonstrate here that by mounting plate-like samples with epoxy, a uniaxial stress exceeding 1 GPa can be achieved in an active volume of at least 5 mm3. We show that for practical operation, it is important to monitor both the force and displacement applied to the sample. In addition, because time is critical during facility experiments, samples are mounted in detachable holders that can be rapidly exchanged. The piezoelectric actuators are likewise contained in an exchangeable cartridge. © 2020 Author(s).