Search Results

Now showing 1 - 4 of 4
  • Item
    Enhanced calcium ion mobilization in osteoblasts on amino group containing plasma polymer nanolayer
    (London : BioMed Central, 2018-3-21) Staehlke, Susanne; Rebl, Henrike; Finke, Birgit; Mueller, Petra; Gruening, Martina; Nebe, J. Barbara
    Background: Biomaterial modifications—chemical and topographical—are of particular importance for the integration of materials in biosystems. Cells are known to sense these biomaterial characteristics, but it has remained unclear which physiological processes bio modifications trigger. Hence, the question arises of whether the dynamic of intracellular calcium ions is important for the characterization of the cell–material interaction. In our prior research we could demonstrate that a defined geometrical surface topography affects the cell physiology; this was finally detectable in a reduced intracellular calcium mobilization after the addition of adenosine triphosphate (ATP). Results: This new contribution examines the cell physiology of human osteoblasts concerning the relative cell viability and the calcium ion dynamic on different chemical modifications of silicon–titanium (Ti) substrates. Chemical modifications comprising the coating of Ti surfaces with a plasma polymerized allylamine (PPAAm)-layer or with a thin layer of collagen type-I were compared with a bare Ti substrate as well as tissue culture plastic. For this purpose, the human osteoblasts (MG-63 and primary osteoblasts) were seeded onto the surfaces for 24 h. The relative cell viability was determined by colorimetric measurements of the cell metabolism and relativized to the density of cells quantified using crystal violet staining. The calcium ion dynamic of osteoblasts was evaluated by the calcium imaging analysis of fluo-3 stained vital cells using a confocal laser scanning microscope. The positively charged nano PPAAm-layer resulted in enhanced intracellular calcium ion mobilization after ATP-stimulus and cell viability. This study underlines the importance of the calcium signaling for the manifestation of the cell physiology. Conclusions: Our current work provides new insights into the intracellular calcium dynamic caused by diverse chemical surface compositions. The calcium ion dynamic appears to be a sensitive parameter for the cell physiology and, thus, may represent a useful approach for evaluating a new biomaterial. In this regard, reliable in vitro-tests of cell behavior at the interface to a material are crucial steps in securing the success of a new biomaterial in medicine.
  • Item
    Plasma polymerized allylamine-the unique cell-attractive nanolayer for dental implant materials
    (Basel : MDPI, 2019) Nebe, J. Barbara; Rebl, Henrike; Schlosser, Michael; Staehlke, Susanne; Gruening, Martina; Weltmann, Klaus-Dieter; Walschus, Uwe; Finke, Birgit
    Biomaterials should be bioactive in stimulating the surrounding tissue to accelerate the ingrowth of permanent implants. Chemical and topographical features of the biomaterial surface affect cell physiology at the interface. A frequently asked question is whether the chemistry or the topography dominates the cell-material interaction. Recently, we demonstrated that a plasma-chemical modification using allylamine as a precursor was able to boost not only cell attachment and cell migration, but also intracellular signaling in vital cells. This microwave plasma process generated a homogenous nanolayer with randomly distributed, positively charged amino groups. In contrast, the surface of the human osteoblast is negatively charged at −15 mV due to its hyaluronan coat. As a consequence, we assumed that positive charges at the material surface—provoking electrostatic interaction forces—are attractive for the first cell encounter. This plasma-chemical nanocoating can be used for several biomaterials in orthopedic and dental implantology like titanium, titanium alloys, calcium phosphate scaffolds, and polylactide fiber meshes produced by electrospinning. In this regard, we wanted to ascertain whether plasma polymerized allylamine (PPAAm) is also suitable for increasing the attractiveness of a ceramic surface for dental implants using Yttria-stabilized tetragonal zirconia.
  • Item
    Automatic Actin Filament Quantification and Cell Shape Modeling of Osteoblasts on Charged Ti Surfaces
    (Basel : MDPI, 2021) Gruening, Martina; Dawson, Jonathan E.; Voelkner, Christian; Neuber, Sven; Fricke, Katja; van Rienen, Ursula; Speller, Sylvia; Helm, Christiane A.; Nebe, J. Barbara
    Surface charges at the cell–biomaterial interface are known to determine cellular functions. Previous findings on cell signaling indicate that osteoblastic cells favor certain moderately positive surface charges, whereas highly positive charges are not tolerated. In this study, we aimed to gain deeper insights into the influence exerted by surface charges on the actin cytoskeleton and the cell shape. We analyzed surfaces with a negative, moderately positive, and highly positive zeta (ζ) potential: titanium (Ti), Ti with plasma polymerized allylamine (PPAAm), and Ti with a polydiallyldimethylammonium chloride (PDADMA) multilayer, respectively. We used the software FilaQuant for automatic actin filament quantification of osteoblastic MG-63s, analyzed the cell edge height with scanning ion conductance microscopy (SICM), and described the cellular shape via a mathematical vertex model. A significant enhancement of actin filament formation was achieved on moderately positive (+7 mV) compared with negative ζ-potentials (−87 mV). A hampered cell spreading was reflected in a diminished actin filament number and length on highly positively charged surfaces (+50 mV). Mathematical simulations suggested that in these cells, cortical tension forces dominate the cell–substrate adhesion forces. Our findings present new insights into the impact of surface charges on the overall cell shape and even intracellular structures.
  • Item
    Enhancement of Intracellular Calcium Ion Mobilization by Moderately but Not Highly Positive Material Surface Charges
    (Lausanne : Frontiers Media, 2020) Gruening, Martina; Neuber, Sven; Nestler, Peter; Lehnfeld, Jutta; Dubs, Manuela; Fricke, Katja; Schnabelrauch, Matthias; Helm, Christiane A.; Müller, Rainer; Staehlke, Susanne; Nebe, J. Barbara
    Electrostatic forces at the cell interface affect the nature of cell adhesion and function; but there is still limited knowledge about the impact of positive or negative surface charges on cell-material interactions in regenerative medicine. Titanium surfaces with a variety of zeta potentials between −90 mV and +50 mV were generated by functionalizing them with amino polymers, extracellular matrix proteins/peptide motifs and polyelectrolyte multilayers. A significant enhancement of intracellular calcium mobilization was achieved on surfaces with a moderately positive (+1 to +10 mV) compared with a negative zeta potential (−90 to −3 mV). Dramatic losses of cell activity (membrane integrity, viability, proliferation, calcium mobilization) were observed on surfaces with a highly positive zeta potential (+50 mV). This systematic study indicates that cells do not prefer positive charges in general, merely moderately positive ones. The cell behavior of MG-63s could be correlated with the materials’ zeta potential; but not with water contact angle or surface free energy. Our findings present new insights and provide an essential knowledge for future applications in dental and orthopedic surgery. © Copyright © 2020 Gruening, Neuber, Nestler, Lehnfeld, Dubs, Fricke, Schnabelrauch, Helm, Müller, Staehlke and Nebe.