Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Quantification of silver nanoparticle uptake and distribution within individual human macrophages by FIB/SEM slice and view

2017-3-21, Guehrs, Erik, Schneider, Michael, Günther, Christian M., Hessing, Piet, Heitz, Karen, Wittke, Doreen, López-Serrano Oliver, Ana, Jakubowski, Norbert, Plendl, Johanna, Eisebitt, Stefan, Haase, Andrea

Background: Quantification of nanoparticle (NP) uptake in cells or tissues is very important for safety assessment. Often, electron microscopy based approaches are used for this purpose, which allow imaging at very high resolution. However, precise quantification of NP numbers in cells and tissues remains challenging. The aim of this study was to present a novel approach, that combines precise quantification of NPs in individual cells together with high resolution imaging of their intracellular distribution based on focused ion beam/ scanning electron microscopy (FIB/SEM) slice and view approaches. Results: We quantified cellular uptake of 75 nm diameter citrate stabilized silver NPs (Ag 75 Cit) into an individual human macrophage derived from monocytic THP-1 cells using a FIB/SEM slice and view approach. Cells were treated with 10 μg/ml for 24 h. We investigated a single cell and found in total 3138 ± 722 silver NPs inside this cell. Most of the silver NPs were located in large agglomerates, only a few were found in clusters of fewer than five NPs. Furthermore, we cross-checked our results by using inductively coupled plasma mass spectrometry and could confirm the FIB/SEM results. Conclusions: Our approach based on FIB/SEM slice and view is currently the only one that allows the quantification of the absolute dose of silver NPs in individual cells and at the same time to assess their intracellular distribution at high resolution. We therefore propose to use FIB/SEM slice and view to systematically analyse the cellular uptake of various NPs as a function of size, concentration and incubation time.

Loading...
Thumbnail Image
Item

Experimental evaluation of signal-to-noise in spectro-holography via modified uniformly redundant arrays in the soft x-ray and extreme ultraviolet spectral regime

2017-05-08, Günther, Christian M., Guehrs, Erik, Schneider, Michael, Pfau, Bastian, von Korff Schmising, Clemens, Geilhufe, Jan, Schaffert, Stefan, Eisebitt, Stefan

We present dichroic x-ray lensless magnetic imaging by Fourier transform holography with an extended reference scheme via a modified uniformly redundant array (mURA). Holographic images of magnetic domains simultaneously generated by a single pinhole reference as well as by a mURA reference are compared with respect to the signal-to-noise ratio (SNR) as a function of exposure time. We apply this approach for spectro-holographic imaging of ferromagnetic domain patterns in Co/Pt multilayer films. Soft x-rays with wavelengths of 1.59 nm (Co L3 absorption edge) and 20.8 nm (Co M2,3 absorption edges) are used for image formation and to generate contrast via x-ray magnetic circular dichroism. For a given exposure time, the mURA-based holography allows to decouple the reconstruction SNR from the spatial resolution. For 1.59 nm wavelength, the reconstruction via the extended reference scheme shows no significant loss of spatial resolution compared to the single pinhole reference. In contrast, at 20.8 nm wavelength the single pinhole reveals some very intricate features which are lost in the image generated by the mURA, although overall a high-quality image is generated. The SNR-advantage of the mURA scheme is most notable when the hologram has to be encoded with few photons, while errors associated with the increased complexity of the reconstruction process reduce the advantage for high-photon-number experiments.

Loading...
Thumbnail Image
Item

Multi-color imaging of magnetic Co/Pt heterostructures

2017, Willems, Felix, von Korff Schmising, Clemens, Weder, David, Günther, Christian M., Schneider, Michael, Pfau, Bastian, Meise, Sven, Guehrs, Erik, Geilhufe, Jan, Merhe, Alaa El Din, Jal, Emmanuelle, Vodungbo, Boris, Lüning, Jan, Mahieu, Benoit, Capotondi, Flavio, Pedersoli, Emanuele, Gauthier, David, Manfredda, Michele, Eisebitt, Stefan

We present an element specific and spatially resolved view of magnetic domainsin Co/Pt heterostructures in the extreme ultraviolet spectral range. Resonantsmall-angle scattering and coherent imaging with Fourier-transform holographyreveal nanoscale magnetic domain networks via magnetic dichroism of Co at theM2,3 edges as well as via strong dichroic signals at the O2,3 and N6,7 edges of Pt.We demonstrate for the first time simultaneous, two-color coherent imaging at afree-electron laser facility paving the way for a direct real space access toultrafast magnetization dynamics in complex multicomponent material systems.