Search Results

Now showing 1 - 3 of 3
  • Item
    A multi-model analysis of teleconnected crop yield variability in a range of cropping systems
    (Göttingen : Copernicus Publ., 2020) Heino, Matias; Guillaume, Joseph H.A.; Müller, Christoph; Iizumi, Toshichika; Kummu, Matti
    Climate oscillations are periodically fluctuating oceanic and atmospheric phenomena, which are related to variations in weather patterns and crop yields worldwide. In terms of crop production, the most widespread impacts have been observed for the El Niño-Southern Oscillation (ENSO), which has been found to impact crop yields on all continents that produce crops, while two other climate oscillations - the Indian Ocean Dipole (IOD) and the North Atlantic Oscillation (NAO) - have been shown to especially impact crop production in Australia and Europe, respectively. In this study, we analyse the impacts of ENSO, IOD, and NAO on the growing conditions of maize, rice, soybean, and wheat at the global scale by utilising crop yield data from an ensemble of global gridded crop models simulated for a range of crop management scenarios. Our results show that, while accounting for their potential co-variation, climate oscillations are correlated with simulated crop yield variability to a wide extent (half of all maize and wheat harvested areas for ENSO) and in several important crop-producing areas, e.g. in North America (ENSO, wheat), Australia (IOD and ENSO, wheat), and northern South America (ENSO, soybean). Further, our analyses show that higher sensitivity to these oscillations can be observed for rainfed and fully fertilised scenarios, while the sensitivity tends to be lower if crops were to be fully irrigated. Since the development of ENSO, IOD, and NAO can potentially be forecasted well in advance, a better understanding about the relationship between crop production and these climate oscillations can improve the resilience of the global food system to climate-related shocks. © 2020 American Institute of Physics Inc.. All rights reserved.
  • Item
    The use of food imports to overcome local limits to growth
    (Hoboken, NJ : Wiley, 2017) Porkka, Miina; Guillaume, Joseph H.A.; Siebert, Stefan; Schaphoff, Sibyll; Kummu, Matti
    There is a fundamental tension between population growth and carrying capacity, i.e., the population that could potentially be supported using the resources and technologies available at a given time. When population growth outpaces improvements in food production locally, food imports can avoid local limits and allow growth to continue. This import strategy is central to the debate on food security with continuing rapid growth of the world population. This highlights the importance of a quantitative global understanding of where the strategy is implemented, whether it has been successful, and what drivers are involved. We present an integrated quantitative analysis to answer these questions at sub‐national and national scale for 1961–2009, focusing on water as the key limiting resource and accounting for resource and technology impacts on local carrying capacity. According to the sub‐national estimates, food imports have nearly universally been used to overcome local limits to growth, affecting 3.0 billion people—81% of the population that is approaching or already exceeded local carrying capacity. This strategy is successful in 88% of the cases, being highly dependent on economic purchasing power. In the unsuccessful cases, increases in imports and local productivity have not kept pace with population growth, leaving 460 million people with insufficient food. Where the strategy has been successful, food security of 1.4 billion people has become dependent on imports. Whether or not this dependence on imports is considered desirable, it has policy implications that need to be taken into account.
  • Item
    Giving Legs to Handprint Thinking: Foundations for Evaluating the Good We Do
    (Hoboken, NJ : Wiley-Blackwell, 2020) Guillaume, Joseph H.A.; Sojamo, Suvi; Porkka, Miina; Gerten, Dieter; Jalava, Mika; Lankoski, Leena; Lehikoinen, Elina; Lettenmeier, Michael; Pfister, Stephan; Usva, Kirsi; Wada, Yoshihide; Kummu, Matti
    In environmental management and sustainability there is an increasing interest in measurement and accounting of beneficial impact—as an incentive to action, as a communication tool, and to move toward a positive, constructive approach focused on opportunities rather than problems. One approach uses the metaphor of a “handprint,” complementing the notion of environmental footprints, which have been widely adopted for impact measurement and accounting. We analyze this idea by establishing core principles of handprint thinking: Handprint encourages actions with positive impacts and connects to analyses of footprint reductions but adds value to them and addresses the issue of what action should be taken. We also identify five key questions that need to be addressed and decisions that need to be made in performing a (potentially quantitative) handprint assessment, related to scoping of the improvement to be made, how it is achieved, and how credit is assigned, taking into account constraints on action. A case study of the potential water footprint reduction of an average Finn demonstrates how handprint thinking can be a natural extension of footprint reduction analyses. We find that there is a diversity of possible handprint assessments that have the potential to encourage doing good. Their common foundation is “handprint thinking.”. © 2020 The Authors.