Search Results

Now showing 1 - 7 of 7
  • Item
    Light bullets in a time-delay model of a wide-aperture mode-locked semiconductor laser
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Pimenov, Alexander; Javaloyes, Julien; Gurevich, Svetlana V.; Vladimirov, Andrei G.
    Recently, a mechanism of formation of light bullets (LBs) in wide-aperture passively modelocked lasers was proposed. The conditions for existence and stability of these bullets, found in the long cavity limit, were studied theoretically under the mean field (MF) approximation using a Haus-type model equation. In this paper we relax the MF approximation and study LB formation in a model of a wide-aperture three section laser with a long diffractive section and short absorber and gain sections. To this end we derive a nonlocal delay-differential equation (NDDE) model and demonstrate by means of numerical simulations that this model supports stable LBs. We observe that the predictions about the regions of existence and stability of the LBs made previously using MF laser models agree well with the results obtained using the NDDE model. Moreover, we demonstrate that the general conclusions based upon the Haus model that regard the robustness of the LBs remain true in the NDDE model valid beyond the MF approximation, when the gain, losses and diffraction per cavity round-trip are not small perturbations anymore.
  • Item
    Delayed feedback control of self-mobile cavity solitons
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Pimenov, Alexander; Vladimirov, Andrei G.; Gurevich, Svetlana V.; Panajotov, Krassimir; Huyet, Guillaume; Tlidi, Mustapha
    Control of the motion of cavity solitons is one the central problems in nonlinear optical pattern formation. We report on the impact of the phase of the time-delayed optical feedback and carrier lifetime on the self-mobility of localized structures of light in broad area semiconductor cavities. We show both analytically and numerically that the feedback phase strongly affects the drift instability threshold as well as the velocity of cavity soliton motion above this threshold. In addition we demonstrate that non-instantaneous carrier response in the semiconductor medium is responsible for the increase in critical feedback rate corresponding to the drift instability.
  • Item
    Turbulence in the Ott-Antonsen equation for arrays of coupled phase oscillators
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Wolfrum, Matthias; Gurevich, Svetlana V.; Omelchenko, Oleh E.
    In this paper we study the transition to synchrony in an one-dimensional array of oscillators with non-local coupling. For its description in the continuum limit of a large number of phase oscillators, we use a corresponding Ott-Antonsen equation, which is an integrodifferential equation for the evolution of the macroscopic profiles of the local mean field. Recently, it has been reported that in the spatially extended case at the synchronization threshold there appear partially coherent plane waves with different wave numbers, which are organized in the well-known Eckhaus scenario. In this paper, we show that for Kuramoto-Sakaguchi phase oscillators the phase lag parameter in the interaction function can induce a Benjamin-Feir type instability of the partially coherent plane waves. The emerging collective macroscopic chaos appears as an intermediate stage between complete incoherence and stable partially coherent plane waves.We give an analytic treatment of the Benjamin-Feir instability and its onset in a codimension-two bifurcation in the Ott-Antonsen equation as well as a numerical study of the transition from phase turbulence to amplitude turbulence inside the Benjamin-Feir unstable region.
  • Item
    Effect of Cherenkov radiation on localized states interaction
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Vladimirov, Andrei G.; Gurevich, Svetlana V.; Tlidi, Mustapha
    We study theoretically the interaction of temporal localized states in all fiber cavities and microresonator-based optical frequency comb generators. We show that Cherenkov radiation emitted in the presence of third order dispersion breaks the symmetry of the localized structures interaction and greatly enlarges their interaction range thus facilitating the experimental observation of the dissipative soliton bound states. Analytical derivation of the reduced equations governing slow time evolution of the positions of two interacting localized states in a generalized Lugiato-Lefever model with the third order dispersion term is performed. Numerical solutions of the model equation are in close agreement with analytical predictions.
  • Item
    Tunable Kerr frequency combs and temporal localized states in time-delayed Gires--Tournois interferometers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Schelte, Christian; Pimenov, Alexander; Vladimirov, Andrei G.; Javaloyes, Julien; Gurevich, Svetlana V.
    In this Letter we study theoretically a new set-up allowing for the generation of temporal localized states and frequency combs. The setup is compact (a few cm) and can be implemented using established technologies, while offering tunable repetition rates and potentially high power operation. It consists of a vertically emitting micro-cavity, operated in the Gires?Tournois regime, containing a Kerr medium with strong time-delayed optical feedback as well as detuned optical injection. We disclose sets of multistable dark and bright temporal localized states coexisting on their respective bistable homogeneous backgrounds.
  • Item
    Delayed feedback control of the self-induced motion of localized structures of light
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Vladimirov, Andrei G.; Pimenov, Alexander; Gurevich, Svetlana V.; Panajotov, Krassimir; Averlant, Eugene; Tlidi, Mustapha
    We investigate a control of the motion of localized structures of light by means of delay feedback in the transverse section of a broad area nonlinear optical system. The delayed feedback is found to induce a spontaneous motion of a solitary localized structure that is stationary and stable in the absence of feedback. We focus our analysis on an experimentally relevant system namely the Vertical-Cavity Surface-Emitting Laser (VCSEL). In the absence of the delay feedback we present experimental evidence of stationary localized structures in a 80 m aperture VCSEL. The spontaneous formation of localized structures takes place above the lasing threshold and under optical injection. Then, we consider the effect of the time-delayed optical feedback and investigate analytically the role of the phase of the feedback and the carrier lifetime on the self-mobility properties of the localized structures. We show that these two parameters affect strongly the space time dynamics of two-dimensional localized structures. We derive an analytical formula for the threshold associated with drift instability of localized structures and a normal form equation describing the slow time evolution of the speed of the moving structure.
  • Item
    Delayed feedback control of self-mobile cavity solitons in a wide-aperture laser with a saturable absorber
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Schemmelmann, Tobias; Tabbert, Felix; Pimenov, Alexander; Vladimirov, Andrei G.; Gurevich, Svetlana V.
    We investigate the spatiotemporal dynamics of cavity solitons in a broad area vertical-cavity surface-emitting laser with saturable absorption subjected to time-delayed optical feedback. Using a combination of analytical, numerical and path continuation methods we analyze the bifurcation structure of stationary and moving cavity solitons and identify two different types of traveling localized solutions, corresponding to slow and fast motion. We show that the delay impacts both stationary and moving solutions either causing drifting and wiggling dynamics of initially stationary cavity solitons or leading to stabilization of intrinsically moving solutions. Finally, we demonstrate that the fast cavity solitons can be associated with a lateral mode-locking regime in a broad-area laser with a single longitudinal mode.