Search Results

Now showing 1 - 2 of 2
  • Item
    Effects of Drought and Heat on Photosynthetic Performance, Water Use and Yield of Two Selected Fiber Hemp Cultivars at a Poor-Soil Site in Brandenburg (Germany)
    (Basel : MDPI, 2020) Herppich, Werner B.; Gusovius, Hans-Jörg; Flemming, Inken; Drastig, Katrin
    Hemp currently regains certain importance as fiber, oil and medical crop not least because of its modest requirements of biocides, fertilizer and water. During recent years, crops were exposed to a combination of drought and heat, even in northern Central-Europe. Dynamic responses of photosynthesis and stomatal conductance to these stresses and their persistent effects had been studied, if at all, in controlled environment experiments. Comprehensive field studies on diurnal and long-term net photosynthesis and gas exchange, and yield properties of hemp during a drought prone, high-temperature season in northern Central-Europe are obviously missing. Thus, in whole season field trails, the essential actual physiological (rates of net photosynthesis and transpiration, stomatal conductance, water use efficiencies, ambient and internal CO2 concentrations) and the yield performance of modern high-yielding multi-purpose hemp cultivars, ‘Ivory’ and ‘Santhica 27’, were evaluated under extreme environmental conditions and highly limited soil water supply. This provides comprehensive information on the usability of these cultivars under potential future harsh production conditions. Plants of both cultivars differentially cope with the prevailing climatic and soil water conditions. While ‘Ivory’ plants developed high rates of CO2 gain and established large leaf area per plant in the mid-season, those of ‘Santhica 27’ utilized lower CO2 uptake rates at lower leaf area per plant most time. This and the higher germination success of ‘Santhica 27’ resulted in nearly twice the yield compared to ‘Ivory’. Although stomatal control of CO2 gain was pronounced in both cultivars, higher stomatal limitations in ‘Ivory’ plants resulted in higher overall intrinsic water use efficiency. Cultivation of both hemp cultivars with only basic irrigation during seed germination was successful and without large effects on yield and quality. This was valid even under extremely hot and dry climatic conditions in northern Central Europe.
  • Item
    Study of Water Productivity of Industrial Hemp under Hot and Dry Conditions in Brandenburg (Germany) in the Year 2018
    (Basel : MDPI, 2020) Drastig, Katrin; Flemming, Inken; Gusovius, Hans-Jörg; Herppich, Werner B.
    Hemp (Cannabis sativa L.) is a high-yielding multi-purpose crop, but its hydrological functioning is poorly understood. Studies on the interception processes in hemp have been lacking so far. This study contributes to the understanding of the influences of evaporation of intercepted water and other hydrological fluxes within plants of two cultivars, “Santhica 27” and “Ivory”, on the water productivity. To determine water productivity and evaporation from interception, field measurements were conducted on plants of both cultivars at different stages of development. Precipitation (P), throughfall (TF), transpiration (T), and volumetric water content (VWC) were measured along with leaf area index (LAI) and yield of selected plant components. For the entire vegetation period, the cumulative P of 44 mm was converted into 13 mm TF (30%). The inferred evaporation of intercepted water (I) was high at 31 mm (71%). For the assessment water fluxes, the evaporation of intercepted water must be considered in the decision-making process. Besides the LAI, the plant architecture and the meteorological conditions during the cropping cycle seem to be the main factors determining I in the case of plants of both cultivars. Water productivity (WPDM) of the whole plant varied between 3.07 kg m−3 for Ivory and 3.49 for Santhica 27. In the case of bast yield, WPDM was 0.39 kg m-3 for Santhica 27 and 0.45 kg m−3 for Ivory. After the propagation of the uncertainties, the bandwidth of the WPDM of the whole plant was between 0.42 kg m−3 and 2.57 kg m−3. For bast fiber a bandwidth of the WP between 0.06 kg m−3 and 0.33 kg m−3 was calculated. The results show furthermore that even with a precise examination of water productivity, a high bandwidth of local values is revealed on different cultivars. However, generic WP values for fiber crops are not attainable.