Search Results

Now showing 1 - 2 of 2
  • Item
    The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2021) Deinhart, Victor; Kern, Lisa-Marie; Kirchhof, Jan N.; Juergensen, Sabrina; Sturm, Joris; Krauss, Enno; Feichtner, Thorsten; Kovalchuk, Sviatoslav; Schneider, Michael; Engel, Dieter; Pfau, Bastian; Hecht, Bert; Bolotin, Kirill I.; Reich, Stephanie; Höflich, Katja
    Focused beams of helium ions are a powerful tool for high-fidelity machining with spatial precision below 5 nm. Achieving such a high patterning precision over large areas and for different materials in a reproducible manner, however, is not trivial. Here, we introduce the Python toolbox FIB-o-mat for automated pattern creation and optimization, providing full flexibility to accomplish demanding patterning tasks. FIB-o-mat offers high-level pattern creation, enabling high-fidelity large-area patterning and systematic variations in geometry and raster settings. It also offers low-level beam path creation, providing full control over the beam movement and including sophisticated optimization tools. Three applications showcasing the potential of He ion beam nanofabrication for two-dimensional material systems and devices using FIB-o-mat are presented.
  • Item
    Strongly coupled, high-quality plasmonic dimer antennas fabricated using a sketch-and-peel technique
    (Berlin : de Gruyter, 2020) Gittinger, Moritz; Höflich, Katja; Smirnov, Vladimir; Kollmann, Heiko; Lienau, Christoph; Silies, Martin
    A combination of helium- and gallium-ion beam milling together with a fast and reliable sketch-and-peel technique is used to fabricate gold nanorod dimer antennas with an excellent quality factor and with gap distances of less than 6 nm. The high fabrication quality of the sketch-and-peel technique compared to a conventional ion beam milling technique is proven by polarisation-resolved linear dark-field spectromicroscopy of isolated dimer antennas. We demonstrate a strong coupling of the two antenna arms for both fabrication techniques, with a quality factor of more than 14, close to the theoretical limit, for the sketch-and-peel-produced antennas compared to only 6 for the conventional fabrication process. The obtained results on the strong coupling of the plasmonic dimer antennas are supported by finite-difference time-domain simulations of the light-dimer antenna interaction. The presented fabrication technique enables the rapid fabrication of large-scale plasmonic or dielectric nanostructures arrays and metasurfaces with single-digit nanometer scale milling accuracy. © 2020 Christoph Lienau, Martin Silies et al., published by De Gruyter, Berlin/Boston.