Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication

2021, Deinhart, Victor, Kern, Lisa-Marie, Kirchhof, Jan N., Juergensen, Sabrina, Sturm, Joris, Krauss, Enno, Feichtner, Thorsten, Kovalchuk, Sviatoslav, Schneider, Michael, Engel, Dieter, Pfau, Bastian, Hecht, Bert, Bolotin, Kirill I., Reich, Stephanie, Höflich, Katja

Focused beams of helium ions are a powerful tool for high-fidelity machining with spatial precision below 5 nm. Achieving such a high patterning precision over large areas and for different materials in a reproducible manner, however, is not trivial. Here, we introduce the Python toolbox FIB-o-mat for automated pattern creation and optimization, providing full flexibility to accomplish demanding patterning tasks. FIB-o-mat offers high-level pattern creation, enabling high-fidelity large-area patterning and systematic variations in geometry and raster settings. It also offers low-level beam path creation, providing full control over the beam movement and including sophisticated optimization tools. Three applications showcasing the potential of He ion beam nanofabrication for two-dimensional material systems and devices using FIB-o-mat are presented.

Loading...
Thumbnail Image
Item

Strongly coupled, high-quality plasmonic dimer antennas fabricated using a sketch-and-peel technique

2020, Gittinger, Moritz, Höflich, Katja, Smirnov, Vladimir, Kollmann, Heiko, Lienau, Christoph, Silies, Martin

A combination of helium- and gallium-ion beam milling together with a fast and reliable sketch-and-peel technique is used to fabricate gold nanorod dimer antennas with an excellent quality factor and with gap distances of less than 6 nm. The high fabrication quality of the sketch-and-peel technique compared to a conventional ion beam milling technique is proven by polarisation-resolved linear dark-field spectromicroscopy of isolated dimer antennas. We demonstrate a strong coupling of the two antenna arms for both fabrication techniques, with a quality factor of more than 14, close to the theoretical limit, for the sketch-and-peel-produced antennas compared to only 6 for the conventional fabrication process. The obtained results on the strong coupling of the plasmonic dimer antennas are supported by finite-difference time-domain simulations of the light-dimer antenna interaction. The presented fabrication technique enables the rapid fabrication of large-scale plasmonic or dielectric nanostructures arrays and metasurfaces with single-digit nanometer scale milling accuracy. © 2020 Christoph Lienau, Martin Silies et al., published by De Gruyter, Berlin/Boston.