Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

On a mathematical model for laser-induced thermotherapy

2008, Fasano, Antonio, Hömberg, Dietmar, Naumov, Dmitri

We study a mathematical model for laser-induced thermotherapy, a minimally invasive cancer treatment. The model consists of a diffusion approximation of the radiation transport equation coupled to a bio-heat equation and a model to describe the evolution of the coagulated zone. Special emphasis is laid on a refined model of the applicator device, accounting for the effect of coolant flow inside. Comparisons between experiment and simulations show that the model is able to predict the experimentally achieved temperatures reasonably well.

Loading...
Thumbnail Image
Item

A milling model with thermal effects including the dynamics of machine and work piece

2008, Rott, Oliver, Rasper, Patrick, Hömberg, Dietmar, Uhlmann, Eckart

This paper deals with the development of a new mathematical model that characterizes the structure-process interaction for a complex milling system. The structure is divided into a work piece and a machine part, which are represented by different models. While the machine dynamics is characterized by a standard multi-body system, the work piece is described as a linear thermo-elastic continuum. The coupling of both parts is carried out by an empirical process model permitting an estimate of heat and coupling forces occurring during milling. This work reports the derivation of the governing equations emphasizing the coupling and summarizes the numerical algorithms being applied to solve the coupled equation system. The results of numerical simulations that show the dynamics of the complex thermo-mechanical system are presented at the end.

Loading...
Thumbnail Image
Item

Optimal control for the thermistor problem

2008, Hömberg, Dietmar, Meyer, Christian, Rehberg, Joachim, Ring, Wolfgang

This paper is concerned with the state-constrained optimal control of the two-dimensional thermistor problem, a quasi-linear coupled system of a parabolic and elliptic PDE with mixed boundary conditions. This system models the heating of a conducting material by means of direct current. Existence, uniqueness and continuity for the state system are derived by employing maximal elliptic and parabolic regularity. By similar arguments the linearized state system is discussed, while the adjoint system involving measures is investigated using a duality argument. These results allow to derive first-order necessary conditions for the optimal control problem.

Loading...
Thumbnail Image
Item

Phase transformation modeling and parameter identification from dilatometric investigations

2008, Suwanpinij, Piyada, Togobytska, Nataliya, Keul, Christoph, Weiss, Wolf, Prahl, Ulrich, Hömberg, Dietmar, Bleck, Wolfgang

The goal of this paper is to propose a new approach towards the evaluation of dilatometric results, which are often employed to analyse the phase transformation kinetics in steel, especially in terms of continuous cooling transformation (CCT) diagram. A simple task of dilatometry is deriving the start and end temperatures of the phase transformation. It can yield phase transformation kinetics provided that plenty metallographic investigations are performed, whose analysis is complicated especially in case of several coexisting product phases. The new method is based on the numerical solution of a thermomechanical identification problem. It is expected that the phase transformation kinetics can be derived by this approach with less metallographic tasks. The first results are remarkably promising although further investigations are required for the numerical simulations.

Loading...
Thumbnail Image
Item

A model for the austenite-ferrite phase transition in steel including misfit stress

2008, Dreyer, Wolfgang, Hömberg, Dietmar, Petzold, Thomas

We present a thermodynamically consistent model to describe the austenite-ferrite phase transition in steel. We consider the influence of the mechanical displacement field due to eigenstrains caused by volumetric expansion. The model equations are derived in a systematical framework. They are based on the conservation laws for mass and momentum and the second law of thermodynamics. By means of numerical computations for a simplified interface controlled model, we examine the influence of the mechanical contributions to the transformation kinetics and the equilibrium states.