Search Results

Now showing 1 - 9 of 9
  • Item
    Optimal control of a cooling line for production of hot rolled dual phase steel
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Bleck, Wolfgang; Hömberg, Dietmar; Prahl, Ulrich; Suwanpinij, Piyada; Togobytska, Nataliya
    In this article, the optimal control of a cooling line for production of dual phase steel in a hot rolling process is discussed. In order to achieve a desired dual phase steel microstructure an optimal cooling strategy has to be found. The cooling strategy should be such that a desired final distribution of ferrite in the steel slab is reached most accurately. This problem has been solved by means of mathematical control theory. The results of the optimal control of the cooling line have been verified in hot rolling experiments at the pilot hot rolling mill at the Institute for Metal Forming (IMF), TU Bergakademie Freiberg.
  • Item
    Task assignment, sequencing and path-planning in robotic welding cells
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Landry, Chantal; Welz, Wolfgang; Henrion, René; Hömberg, Dietmar; Skutella, Martin
    A workcell composed of a workpiece and several welding robots is considered. We are interested in minimizing the makespan in the workcell. Hence, one needs i) to assign tasks between the robots, ii) to do the sequencing of the tasks for each robot and iii) to compute the fastest collisionfree paths between the tasks. Up to now, task assignment and path-planning were always handled separately, the former being a typical Vehicle Routing Problem whereas the later is modelled using an optimal control problem. In this paper, we present a complete algorithm which combines discrete optimization techniques with collision detection and optimal control problems efficiently
  • Item
    Identification of the thermal growth characteristics of coagulated tumor tissue in laser-induced thermotherapy
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Hömberg, Dietmar; Liu, Jujun; Togobytska, Nataliya
    We consider an inverse problem arising in laser-induced thermotherapy, a minimally invasive method for cancer treatment, in which cancer tissues is destroyed by coagulation. For the dosage planning numerical simulation play an important role. To this end a crucial problem is to identify the thermal growth kinetics of the coagulated zone. Mathematically, this problem is a nonlinear and nonlocal parabolic heat source inverse problem. The solution to this inverse problem is defined as the minimizer of a nonconvex cost functional. The existence of the minimizer is proven. We derive the Gateaux derivative of the cost functional, which is based on the adjoint system, and use it for a numerical approximation of the optimal coefficient.
  • Item
    Development of a stability prediction tool for the identification of stable milling processes
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Hömberg, Dietmar; Uhlmann, Eckart; Rott, Oliver; Rasper, Patrick
    This paper deals with a new mathematical model to characterise the interaction between machine and work piece in a milling process. The model consists of a multi-body system representing the milling machine and a linear thermo-elastic work piece model. An extensive experimental analysis supported the development of the governing model equations. A numerical solution strategy is outlined and complemented by simulations of stable and unstable milling processes including work piece effects. The last part covers the development of a new algorithm for the stability analysis of large milling systems.
  • Item
    Shape optimization for a sharp interface model of distortion compensation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Sturm, Kevin; Hintermüller, Michael; Hömberg, Dietmar
    We study a mechanical equilibrium problem for a material consisting of two components with different densities, which allows to change the outer shape by changing the interface between the subdomains. We formulate the shape design problem of compensating unwanted workpiece changes by controlling the interface, employ regularity results for transmission problems for a rigorous derivation of optimality conditions based on the speed method, and conclude with some numerical results based on a spline approximation of the interface.
  • Item
    Parameter identification in non-isothermal nucleation and growth processes
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Hömberg, Dietmar; Lu, Shuai; Sakamoto, Kenichi; Yamamoto, Masahiro
    We study non-isothermal nucleation and growth phase transformations, which are described by a generalized Avrami model for the phase transition coupled with an energy balance to account for recalescence effects. The main novelty of our work is the identification of temperature dependent nucleation rates. We prove that such rates can be uniquely identified from measurements in a subdomain and apply an optimal control approach to develop a numerical strategy for its computation.
  • Item
    Path planning and collision avoidance for robots : dedicated to Prof. Dr. Helmut Maurer on the occasion of his 65th birthday
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Gerdts, Matthias; Henrion, René; Hömberg, Dietmar; Landry, Chantal; Maurer, Helmut
    An optimal control problem to find the fastest collision-free trajectory of a robot surrounded by obstacles is presented. The collision avoidance is based on linear programming arguments and expressed as state constraints. The optimal control problem is solved with a sequential programming method. In order to decrease the number of unknowns and constraints a backface culling active set strategy is added to the resolution technique.
  • Item
    Analysis and simulation of multifrequency induction hardening
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Hömberg, Dietmar; Petzold, Thomas; Rocca, Elisabetta
    We study a model for induction hardening of steel. The related differential system consists of a time domain vector potential formulation of the Maxwells equations coupled with an internal energy balance and an ODE for the volume fraction of austenite, the high temperature phase in steel. We first solve the initial boundary value problem associated by means of a Schauder fixed point argument coupled with suitable a-priori estimates and regularity results. Moreover, we prove a stability estimate entailing, in particular, uniqueness of solutions for our Cauchy problem. We conclude with some finite element simulations for the coupled system.
  • Item
    Boundary coefficient control : a maximal parabolic regularity approach
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Hömberg, Dietmar; Krumbiegel, Klaus; Rehberg, Joachim
    We investigate a control problem for the heat equation. The goal is to find an optimal heat transfer coefficient in the Robin boundary condition such that a desired temperature distribution at the boundary is adhered. To this end we consider a function space setting in which the heat flux across the boundary is forced to be an $L^p$ function with respect to the surface measure, which in turn implies higher regularity for the time derivative of temperature. We show that the corresponding elliptic operator generates a strongly continuous semigroup of contractions and apply the concept of maximal parabolic regularity. This allows to show the existence of an optimal control and the derivation of necessary and sufficient optimality conditions.