Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Two-scale topology optimization with heterogeneous mesostructures based on a local volume constraint

2021, Ebeling-Rump, Moritz, Hömberg, Dietmar, Lasarzik, Robert

A new approach to produce optimal porous mesostructures and at the same time optimizing the macro structure subject to a compliance cost functional is presented. It is based on a phase-field formulation of topology optimization and uses a local volume constraint (LVC). The main novelty is that the radius of the LVC may depend both on space and a local stress measure. This allows for creating optimal topologies with heterogeneous mesostructures enforcing any desired spatial grading and accommodating stress concentrations by stress dependent pore size. The resulting optimal control problem is analysed mathematically, numerical results show its versatility in creating optimal macroscopic designs with tailored mesostructures.

Loading...
Thumbnail Image
Item

Topology optimization subject to additive manufacturing constraints

2019, Ebeling-Rump, Moritz, Hömberg, Dietmar, Lasarzik, Robert, Petzold, Thomas

In Topology Optimization the goal is to find the ideal material distribution in a domain subject to external forces. The structure is optimal if it has the highest possible stiffness. A volume constraint ensures filigree structures, which are regulated via a Ginzburg-Landau term. During 3D Printing overhangs lead to instabilities, which have only been tackled unsatisfactorily. The novel idea is to incorporate an Additive Manufacturing Constraint into the phase field method. A rigorous analysis proves the existence of a solution and leads to first order necessary optimality conditions. With an Allen-Cahn interface propagation the optimization problem is solved iteratively. At a low computational cost the Additive Manufacturing Constraint brings about support structures, which can be fine tuned according to engineering demands. Stability during 3D Printing is assured, which solves a common Additive Manufacturing problem.

Loading...
Thumbnail Image
Item

Structural multiscale topology optimization with stress constraint for additive manufacturing

2019, Auricchio, Ferdinando, Bonetti, Elena, Carraturo, Massimo, Hömberg, Dietmar, Reali, Alessandro, Rocca, Elisabetta

In this paper a phase-field approach for structural topology optimization for a 3D-printing process which includes stress constraint and potentially multiple materials or multiscales is analyzed. First order necessary optimality conditions are rigorously derived and a numerical algorithm which implements the method is presented. A sensitivity study with respect to some parameters is conducted for a two-dimensional cantilever beam problem. Finally, a possible workflow to obtain a 3D-printed object from the numerical solutions is described and the final structure is printed using a fused deposition modeling (FDM) 3D printer.

Loading...
Thumbnail Image
Item

Additive manufacturing graded-material design based on phase-field and topology optimization

2018, Carraturo, Massimo, Rocca, Elisabetta, Bonetti, Elena, Hömberg, Dietmar, Reali, Alessandro, Auricchio, Ferdinando

In the present work we introduce a novel graded-material design for additive manufacturing based on phase-field and topology optimization. The main novelty of this work comes from the introduction of an additional phase-field variable in the classical single-material phase-field topology optimization algorithm. This new variable is used to grade the material properties in a continuous fashion. Two different numerical examples are discussed, in both of them we perform sensitivity studies to asses the effects of different model parameters onto the resulting structure. From the presented results we can observe that the proposed algorithm adds additional freedom in the design, exploiting the higher flexibility coming from additive manufacturing technology.