Search Results

Now showing 1 - 10 of 41
  • Item
    Modelling and simulation of flame cutting for steel plates with solid phases and melting
    (Berlin ; Heidelberg : Springer, 2020) Arenas, Manuel J.; Hömberg, Dietmar; Lasarzik, Robert; Mikkonen, Pertti; Petzold, Thomas
    The goal of this work is to describe in detail a quasi-stationary state model which can be used to deeply understand the distribution of the heat in a steel plate and the changes in the solid phases of the steel and into liquid phase during the flame cutting process. We use a 3D-model similar to previous works from Thiébaud (J. Mater. Process. Technol. 214(2):304–310, 2014) and expand it to consider phases changes, in particular, austenite formation and melting of material. Experimental data is used to validate the model and study its capabilities. Parameters defining the shape of the volumetric heat source and the power density are calibrated to achieve good agreement with temperature measurements. Similarities and differences with other models from literature are discussed. © 2020, The Author(s).
  • Item
    Optimal control of multiphase steel production
    (Berlin ; Heidelberg : Springer, 2019) Hömberg, Dietmar; Krumbiegel, Klaus; Togobytska, Nataliya
    An optimal control problem for the production of multiphase steel is investigated that takes into account phase transformations in the steel slab. The state equations are a semilinear heat equation coupled with an ordinary differential equation, that describes the evolution of the steel microstructure. The time-dependent heat transfer coefficient serves as a control function. Necessary and sufficient optimality conditions for the control problem are derived. For the numerical solution of the control problem, a reduced sequential quadratic programming method with a primal-dual active set strategy is developed. The numerical results are presented for the optimal control of a cooling line in the production of hot-rolled Mo–Mn dual phase steel. © 2019, The Author(s).
  • Item
    Topology optimization subject to additive manufacturing constraints
    (Berlin ; Heidelberg : Springer, 2021) Ebeling-Rump, Moritz; Hömberg, Dietmar; Lasarzik, Robert; Petzold, Thomas
    In topology optimization the goal is to find the ideal material distribution in a domain subject to external forces. The structure is optimal if it has the highest possible stiffness. A volume constraint ensures filigree structures, which are regulated via a Ginzburg–Landau term. During 3D printing overhangs lead to instabilities. As a remedy an additive manufacturing constraint is added to the cost functional. First order optimality conditions are derived using a formal Lagrangian approach. With an Allen-Cahn interface propagation the optimization problem is solved iteratively. At a low computational cost the additive manufacturing constraint brings about support structures, which can be fine tuned according to demands and increase stability during the printing process.
  • Item
    Analysis and simulation of multifrequency induction hardening
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Hömberg, Dietmar; Petzold, Thomas; Rocca, Elisabetta
    We study a model for induction hardening of steel. The related differential system consists of a time domain vector potential formulation of the Maxwells equations coupled with an internal energy balance and an ODE for the volume fraction of austenite, the high temperature phase in steel. We first solve the initial boundary value problem associated by means of a Schauder fixed point argument coupled with suitable a-priori estimates and regularity results. Moreover, we prove a stability estimate entailing, in particular, uniqueness of solutions for our Cauchy problem. We conclude with some finite element simulations for the coupled system.
  • Item
    The heat treatment of steel - a mathematical control problem
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Hömberg, Dietmar; Kern, Daniela
    The goal of this paper is to show how the heat treatment of steel can be modelled in terms of a mathematical optimal control problem. The approach is applied to laser surface hardening and the cooling of a steel slab including mechanical effects. Finally, it is shown how the results can be utilized in industrial practice by a coupling with machine-based control.
  • Item
    On a thermomechanical model of phase transitions in steel
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Chełminski, Krzysztof; Hömberg, Dietmar; Kern, Daniela
    We investigate a thermomechanical model of phase transitions in steel. The strain is assumed to be additively decomposed into an elastic and a thermal part as well as a contribution from transformation induced plasticity. The resulting model can be viewed as an extension of quasistatic linear thermoelasticity. We prove existence of a unique solution and conclude with some numerical simulations.
  • Item
    On the existence of generalized solutions to a spatio-temporal predator-prey system
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Hömberg, Dietmar; Lasarzik, Robert; Plato, Luisa
    In this paper we consider a pair of coupled non-linear partial differential equations describing the interaction of a predator-prey pair. We introduce a concept of generalized solutions and show the existence of such solutions in all space dimension with the aid of a regularizing term, that is motivated by overcrowding phenomena. Additionally, we prove the weak-strong uniqueness of these generalized solutions and the existence of strong solutions at least locally-in-time for space dimension two and three.
  • Item
    A revisited Johnson-Mehl-Avrami-Kolmogorov model and the evolution of grain-size distributions in steel
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Hömberg, Dietmar; Patacchini, Francesco Saverio; Sakamoto, Kenichi; Zimmer, Johannes
    The classical Johnson-Mehl-Avrami-Kolmogorov approach for nucleation and growth models of diffusive phase transitions is revisited and applied to model the growth of ferrite in multiphase steels. For the prediction of mechanical properties of such steels, a deeper knowledge of the grain structure is essential. To this end, a Fokker-Planck evolution law for the volume distribution of ferrite grains is developed and shown to exhibit a log-normally distributed solution. Numerical parameter studies are given and confirm expected properties qualitatively. As a preparation for future work on parameter identification, a strategy is presented for the comparison of volume distributions with area distributions experimentally gained from polished micrograph sections.
  • Item
    A time domain sampling method for inverse acoustic scattering problems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Guo, Yukun; Hömberg, Dietmar; Hu, Guanghui; Li, Jingzhi; Liu, Hongyu
    This work concerns the inverse scattering problems of imaging unknown/inaccessible scatterers by transient acoustic near-field measurements. Based on the analysis of the migration method, we propose efficient and effective sampling schemes for imaging small and extended scatterers from knowledge of time-dependent scattered data due to incident impulsive point sources. Though the inverse scattering problems are known to be nonlinear and ill-posed, the proposed imaging algorithms are totally direct involving only integral calculations on the measurement surface. Theoretical justifications are presented and numerical experiments are conducted to demonstrate the effectiveness and robustness of our methods. In particular, the proposed static imaging functionals enhance the performance of the total focusing method (TFM) and the dynamic imaging functionals show analogous behavior to the time reversal inversion but without solving time-dependent wave equations.
  • Item
    On a mathematical model for laser-induced thermotherapy
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Fasano, Antonio; Hömberg, Dietmar; Naumov, Dmitri
    We study a mathematical model for laser-induced thermotherapy, a minimally invasive cancer treatment. The model consists of a diffusion approximation of the radiation transport equation coupled to a bio-heat equation and a model to describe the evolution of the coagulated zone. Special emphasis is laid on a refined model of the applicator device, accounting for the effect of coolant flow inside. Comparisons between experiment and simulations show that the model is able to predict the experimentally achieved temperatures reasonably well.