Search Results

Now showing 1 - 10 of 14
  • Item
    Towards Bacteria Counting in DI Water of Several Microliters or Growing Suspension Using Impedance Biochips
    (Basel : MDPI, 2020) Kiani, Mahdi; Tannert, Astrid; Du, Nan; Hübner, Uwe; Skorupa, Ilona; Bürger, Danilo; Zhao, Xianyue; Blaschke, Daniel; Rebohle, Lars; Cherkouk, Charaf; Neugebauer, Ute; Schmidt, Oliver G.; Schmidt, Heidemarie
    We counted bacterial cells of E. coli strain K12 in several-microliter DI water or in several-microliter PBS in the low optical density (OD) range (OD = 0.05–1.08) in contact with the surface of Si-based impedance biochips with ring electrodes by impedance measurements. The multiparameter fit of the impedance data allowed calibration of the impedance data with the concentration cb of the E. coli cells in the range of cb = 0.06 to 1.26 × 109 cells/mL. The results showed that for E. coli in DI water and in PBS, the modelled impedance parameters depend linearly on the concentration of cells in the range of cb = 0.06 to 1.26 × 109 cells/mL, whereas the OD, which was independently measured with a spectrophotometer, was only linearly dependent on the concentration of the E. coli cells in the range of cb = 0.06 to 0.50 × 109 cells/mL.
  • Item
    Surface enhanced Raman spectroscopy-based evaluation of the membrane protein composition of the organohalide-respiring Sulfurospirillum multivorans
    (Chichester [u.a.] : Wiley, 2021) Cialla-May, Dana; Gadkari, Jennifer; Winterfeld, Andreea; Hübner, Uwe; Weber, Karina; Diekert, Gabriele; Schubert, Torsten; Goris, Tobias; Popp, Jürgen
    Bacteria often employ different respiratory chains that comprise membrane proteins equipped with various cofactors. Monitoring the protein inventory that is present in the cells under a given cultivation condition is often difficult and time-consuming. One example of a metabolically versatile bacterium is the microaerophilic organohalide-respiring Sulfurospirillum multivorans. Here, we used surface enhanced Raman spectroscopy (SERS) to quickly identify the cofactors involved in the respiration of S. multivorans. We cultured the organism with either tetrachloroethene (perchloroethylene, PCE), fumarate, nitrate, or oxygen as electron acceptors. Because the corresponding terminal reductases of the four different respiratory chains harbor different cofactors, specific fingerprint signals in SERS were expected. Silver nanostructures fabricated by means of electron beam lithography were coated with the membrane fractions extracted from the four S. multivorans cultivations, and SERS spectra were recorded. In the case of S. multivorans cultivated with PCE, the recorded SERS spectra were dominated by Raman peaks specific for Vitamin B12. This is attributed to the high abundance of the PCE reductive dehalogenase (PceA), the key enzyme in PCE respiration. After cultivation with oxygen, fumarate, or nitrate, no Raman spectral features of B12 were found. © 2020 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons Ltd
  • Item
    Controlled growth of transition metal dichalcogenide monolayers using Knudsen-type effusion cells for the precursors
    (Bristol : IOP Publishing, 2019) George, Antony; Neumann, Christof; Kaiser, David; Mupparapu, Rajeshkumar; Lehnert, Tibor; Hübner, Uwe; Tang, Zian; Winter, Andreas; Kaiser, Ute; Staude, Isabelle; Turchanin, Andrey
    Controlling the flow rate of precursors is essential for the growth of high quality monolayer single crystals of transition metal dichalcogenides (TMDs) by chemical vapor deposition. Thus, introduction of an excess amount of the precursors affects reproducibility of the growth process and results in the formation of TMD multilayers and other unwanted deposits. Here we present a simple method for controlling the precursor flow rates using the Knudsen-type effusion cells. This method results in a highly reproducible growth of large area and high density TMD monolayers. The size of the grown crystals can be adjusted between 10 and 200 μm. We characterized the grown MoS2 and WS2 monolayers by optical, atomic force and transmission electron microscopies as well as by x-ray photoelectron, Raman and photoluminescence spectroscopies, and by electrical transport measurements showing their high optical and electronic quality based on the single crystalline nature.
  • Item
    Nanograting-Enhanced Optical Fibers for Visible and Infrared Light Collection at Large Input Angles
    (Basel : MDPI, 2021) Wang, Ning; Zeisberger, Matthias; Hübner, Uwe; Schmidt, Markus A.
    The efficient incoupling of light into particular fibers at large angles is essential for a multitude of applications; however, this is difficult to achieve with commonly used fibers due to low numerical aperture. Here, we demonstrate that commonly used optical fibers functionalized with arrays of metallic nanodots show substantially improved large-angle light-collection performances at multiple wavelengths. In particular, we show that at visible wavelengths, higher diffraction orders contribute significantly to the light-coupling efficiency, independent of the incident polarization, with a dominant excitation of the fundamental mode. The experimental observation is confirmed by an analytical model, which directly suggests further improvement in incoupling efficiency through the use of powerful nanostructures such as metasurface or dielectric gratings. Therefore, our concept paves the way for high-performance fiber-based optical devices and is particularly relevant within the context of endoscopic-type applications in life science and light collection within quantum technology.
  • Item
    Direct supercritical angle localization microscopy for nanometer 3D superresolution
    ([London] : Nature Publishing Group UK, 2021) Dasgupta, Anindita; Deschamps, Joran; Matti, Ulf; Hübner, Uwe; Becker, Jan; Strauss, Sebastian; Jungmann, Ralf; Heintzmann, Rainer; Ries, Jonas
    3D single molecule localization microscopy (SMLM) is an emerging superresolution method for structural cell biology, as it allows probing precise positions of proteins in cellular structures. In supercritical angle localization microscopy (SALM), z-positions of single fluorophores are extracted from the intensity of supercritical angle fluorescence, which strongly depends on their distance to the coverslip. Here, we realize the full potential of SALM and improve its z-resolution by more than four-fold compared to the state-of-the-art by directly splitting supercritical and undercritical emission, using an ultra-high NA objective, and applying fitting routines to extract precise intensities of single emitters. We demonstrate nanometer isotropic localization precision on DNA origami structures, and on clathrin coated vesicles and microtubules in cells, illustrating the potential of SALM for cell biology.
  • Item
    1D p–n Junction Electronic and Optoelectronic Devices from Transition Metal Dichalcogenide Lateral Heterostructures Grown by One-Pot Chemical Vapor Deposition Synthesis
    (Weinheim : Wiley-VCH, 2021) Najafidehaghani, Emad; Gan, Ziyang; George, Antony; Lehnert, Tibor; Ngo, Gia Quyet; Neumann, Christof; Bucher, Tobias; Staude, Isabelle; Kaiser, David; Vogl, Tobias; Hübner, Uwe; Kaiser, Ute; Eilenberger, Falk; Turchanin, Andrey
    Lateral heterostructures of dissimilar monolayer transition metal dichalcogenides provide great opportunities to build 1D in-plane p–n junctions for sub-nanometer thin low-power electronic, optoelectronic, optical, and sensing devices. Electronic and optoelectronic applications of such p–n junction devices fabricated using a scalable one-pot chemical vapor deposition process yielding MoSe2-WSe2 lateral heterostructures are reported here. The growth of the monolayer lateral heterostructures is achieved by in situ controlling the partial pressures of the oxide precursors by a two-step heating protocol. The grown lateral heterostructures are characterized structurally and optically using optical microscopy, Raman spectroscopy/microscopy, and photoluminescence spectroscopy/microscopy. High-resolution transmission electron microscopy further confirms the high-quality 1D boundary between MoSe2 and WSe2 in the lateral heterostructure. p–n junction devices are fabricated from these lateral heterostructures and their applicability as rectifiers, solar cells, self-powered photovoltaic photodetectors, ambipolar transistors, and electroluminescent light emitters are demonstrated. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    P-N junction-based Si biochips with ring electrodes for novel biosensing applications
    (Basel : MDPI, 2019) Kiani, Mahdi; Du, Nan; Vogel, Manja; Raff, Johannes; Hübner, Uwe; Skorupa, Ilona; Bürger, Danilo; Schulz, Stefan E.; Schmidt, Oliver G.; Schmidt, Heidemarie
    In this work, we report on the impedance of p-n junction-based Si biochips with gold ring top electrodes and unstructured platinum bottom electrodes which allows for counting target biomaterial in a liquid-filled ring top electrode region. The systematic experiments on p-n junction-based Si biochips fabricated by two different sets of implantation parameters (i.e. biochips PS5 and BS5) are studied, and the comparable significant change of impedance characteristics in the biochips in dependence on the number of bacteria suspension, i.e., Lysinibacillus sphaericus JG-A12, in Deionized water with an optical density at 600 nm from OD600 = 4–16 in the electrode ring region is demonstrated. Furthermore, with the help of the newly developed two-phase electrode structure, the modeled capacitance and resistance parameters of the electrical equivalent circuit describing the p-n junction-based biochips depend linearly on the number of bacteria in the ring top electrode region, which successfully proves the potential performance of p-n junction-based Si biochips in observing the bacterial suspension. The proposed p-n junction-based biochips reveal perspective applications in medicine and biology for diagnosis, monitoring, management, and treatment of diseases.In this work, we report on the impedance of p-n junction-based Si biochips with gold ring top electrodes and unstructured platinum bottom electrodes which allows for counting target biomaterial in a liquid-filled ring top electrode region. The systematic experiments on p-n junction-based Si biochips fabricated by two different sets of implantation parameters (i.e. biochips PS5 and BS5) are studied, and the comparable significant change of impedance characteristics in the biochips in dependence on the number of bacteria suspension, i.e., Lysinibacillus sphaericus JG-A12, in Deionized water with an optical density at 600 nm from OD600 = 4–16 in the electrode ring region is demonstrated. Furthermore, with the help of the newly developed two-phase electrode structure, the modeled capacitance and resistance parameters of the electrical equivalent circuit describing the p-n junction-based biochips depend linearly on the number of bacteria in the ring top electrode region, which successfully proves the potential performance of p-n junction-based Si biochips in observing the bacterial suspension. The proposed p-n junction-based biochips reveal perspective applications in medicine and biology for diagnosis, monitoring, management, and treatment of diseases.
  • Item
    Characterization of encapsulated graphene layers using extreme ultraviolet coherence tomography
    (Washington, DC : Soc., 2022) Wiesner, Felix; Skruszewicz, Slawomir; Rödel, Christian; Abel, Johann Jakob; Reinhard, Julius; Wünsche, Martin; Nathanael, Jan; Grünewald, Marco; Hübner, Uwe; Paulus, Gerhard G.; Fuchs, Silvio
    Many applications of two-dimensional materials such as graphene require the encapsulation in bulk material. While a variety of methods exist for the structural and functional characterization of uncovered 2D materials, there is a need for methods that image encapsulated 2D materials as well as the surrounding matter. In this work, we use extreme ultraviolet coherence tomography to image graphene flakes buried beneath 200 nm of silicon. We show that we can identify mono-, bi-, and trilayers of graphene and quantify the thickness of the silicon bulk on top by measuring the depth-resolved reflectivity. Furthermore, we estimate the quality of the graphene interface by incorporating a model that includes the interface roughness. These results are verified by atomic force microscopy and prove that extreme ultraviolet coherence tomography is a suitable tool for imaging 2D materials embedded in bulk materials.
  • Item
    Absolute EUV reflectivity measurements using a broadband high-harmonic source and an in situ single exposure reference scheme
    (Washington, DC : Soc., 2022) Abel, Johann J.; Wiesner, Felix; Nathanael, Jan; Reinhard, Julius; Wünsche, Martin; Schmidl, Gabriele; Gawlik, Annett; Hübner, Uwe; Plentz, Jonathan; Rödel, Christian; Paulus, Gerhard G.; Fuchs, Silvio
    We present a tabletop setup for extreme ultraviolet (EUV) reflection spectroscopy in the spectral range from 40 to 100 eV by using high-harmonic radiation. The simultaneous measurements of reference and sample spectra with high energy resolution provide precise and robust absolute reflectivity measurements, even when operating with spectrally fluctuating EUV sources. The stability and sensitivity of EUV reflectivity measurements are crucial factors for many applications in attosecond science, EUV spectroscopy, and nano-scale tomography. We show that the accuracy and stability of our in situ referencing scheme are almost one order of magnitude better in comparison to subsequent reference measurements. We demonstrate the performance of the setup by reflective near-edge x-ray absorption fine structure measurements of the aluminum L2/3 absorption edge in α-Al2O3 and compare the results to synchrotron measurements.
  • Item
    Laboratory setup for extreme ultraviolet coherence tomography driven by a high-harmonic source
    (Melville, NY : American Inst. of Physics, 2019) Nathanael, Jan; Wünsche, Martin; Fuchs, Silvio; Weber, Thomas; Abel, Johann J.; Reinhard, Julius; Wiesner, Felix; Hübner, Uwe; Skruszewicz, Slawomir J.; Paulus, Gerhard G.; Rödel, Christian
    We present a laboratory beamline dedicated to nanoscale subsurface imaging using extreme ultraviolet coherence tomography (XCT). In this setup, broad-bandwidth extreme ultraviolet (XUV) radiation is generated by a laser-driven high-harmonic source. The beamline is able to handle a spectral range of 30-130 eV and a beam divergence of 10 mrad (full width at half maximum). The XUV radiation is focused on the sample under investigation, and the broadband reflectivity is measured using an XUV spectrometer. For the given spectral window, the XCT beamline is particularly suited to investigate silicon-based nanostructured samples. Cross-sectional imaging of layered nanometer-scale samples can be routinely performed using the laboratory-scale XCT beamline. A depth resolution of 16 nm has been achieved using the spectral range of 36-98 eV which represents a 33% increase in resolution due to the broader spectral range compared to previous work. © 2019 Author(s).