Search Results

Now showing 1 - 10 of 22
Loading...
Thumbnail Image
Item

Towards Bacteria Counting in DI Water of Several Microliters or Growing Suspension Using Impedance Biochips

2020, Kiani, Mahdi, Tannert, Astrid, Du, Nan, Hübner, Uwe, Skorupa, Ilona, Bürger, Danilo, Zhao, Xianyue, Blaschke, Daniel, Rebohle, Lars, Cherkouk, Charaf, Neugebauer, Ute, Schmidt, Oliver G., Schmidt, Heidemarie

We counted bacterial cells of E. coli strain K12 in several-microliter DI water or in several-microliter PBS in the low optical density (OD) range (OD = 0.05–1.08) in contact with the surface of Si-based impedance biochips with ring electrodes by impedance measurements. The multiparameter fit of the impedance data allowed calibration of the impedance data with the concentration cb of the E. coli cells in the range of cb = 0.06 to 1.26 × 109 cells/mL. The results showed that for E. coli in DI water and in PBS, the modelled impedance parameters depend linearly on the concentration of cells in the range of cb = 0.06 to 1.26 × 109 cells/mL, whereas the OD, which was independently measured with a spectrophotometer, was only linearly dependent on the concentration of the E. coli cells in the range of cb = 0.06 to 0.50 × 109 cells/mL.

Loading...
Thumbnail Image
Item

Controlled growth of transition metal dichalcogenide monolayers using Knudsen-type effusion cells for the precursors

2019, George, Antony, Neumann, Christof, Kaiser, David, Mupparapu, Rajeshkumar, Lehnert, Tibor, Hübner, Uwe, Tang, Zian, Winter, Andreas, Kaiser, Ute, Staude, Isabelle, Turchanin, Andrey

Controlling the flow rate of precursors is essential for the growth of high quality monolayer single crystals of transition metal dichalcogenides (TMDs) by chemical vapor deposition. Thus, introduction of an excess amount of the precursors affects reproducibility of the growth process and results in the formation of TMD multilayers and other unwanted deposits. Here we present a simple method for controlling the precursor flow rates using the Knudsen-type effusion cells. This method results in a highly reproducible growth of large area and high density TMD monolayers. The size of the grown crystals can be adjusted between 10 and 200 μm. We characterized the grown MoS2 and WS2 monolayers by optical, atomic force and transmission electron microscopies as well as by x-ray photoelectron, Raman and photoluminescence spectroscopies, and by electrical transport measurements showing their high optical and electronic quality based on the single crystalline nature.

Loading...
Thumbnail Image
Item

Magnetically induced transparency of a quantum metamaterial composed of twin flux qubits

2018, Shulga, Kirill, Il'ichev, Evgeny, Fistul, Mikhail V., Besedin, I.S., Butz, Susanne, Astafiev, Oleg, Hübner, Uwe, Ustinov, Alexey V.

Quantum theory is expected to govern the electromagnetic properties of a quantum metamaterial, an artificially fabricated medium composed of many quantum objects acting as artificial atoms. Propagation of electromagnetic waves through such a medium is accompanied by excitations of intrinsic quantum transitions within individual meta-atoms and modes corresponding to the interactions between them. Here we demonstrate an experiment in which an array of double-loop type superconducting flux qubits is embedded into a microwave transmission line. We observe that in a broad frequency range the transmission coefficient through the metamaterial periodically depends on externally applied magnetic field. Field-controlled switching of the ground state of the meta-atoms induces a large suppression of the transmission. Moreover, the excitation of meta-atoms in the array leads to a large resonant enhancement of the transmission. We anticipate possible applications of the observed frequency-tunable transparency in superconducting quantum networks.

Loading...
Thumbnail Image
Item

P-N junction-based Si biochips with ring electrodes for novel biosensing applications

2019, Kiani, Mahdi, Du, Nan, Vogel, Manja, Raff, Johannes, Hübner, Uwe, Skorupa, Ilona, Bürger, Danilo, Schulz, Stefan E., Schmidt, Oliver G., Schmidt, Heidemarie

In this work, we report on the impedance of p-n junction-based Si biochips with gold ring top electrodes and unstructured platinum bottom electrodes which allows for counting target biomaterial in a liquid-filled ring top electrode region. The systematic experiments on p-n junction-based Si biochips fabricated by two different sets of implantation parameters (i.e. biochips PS5 and BS5) are studied, and the comparable significant change of impedance characteristics in the biochips in dependence on the number of bacteria suspension, i.e., Lysinibacillus sphaericus JG-A12, in Deionized water with an optical density at 600 nm from OD600 = 4–16 in the electrode ring region is demonstrated. Furthermore, with the help of the newly developed two-phase electrode structure, the modeled capacitance and resistance parameters of the electrical equivalent circuit describing the p-n junction-based biochips depend linearly on the number of bacteria in the ring top electrode region, which successfully proves the potential performance of p-n junction-based Si biochips in observing the bacterial suspension. The proposed p-n junction-based biochips reveal perspective applications in medicine and biology for diagnosis, monitoring, management, and treatment of diseases.In this work, we report on the impedance of p-n junction-based Si biochips with gold ring top electrodes and unstructured platinum bottom electrodes which allows for counting target biomaterial in a liquid-filled ring top electrode region. The systematic experiments on p-n junction-based Si biochips fabricated by two different sets of implantation parameters (i.e. biochips PS5 and BS5) are studied, and the comparable significant change of impedance characteristics in the biochips in dependence on the number of bacteria suspension, i.e., Lysinibacillus sphaericus JG-A12, in Deionized water with an optical density at 600 nm from OD600 = 4–16 in the electrode ring region is demonstrated. Furthermore, with the help of the newly developed two-phase electrode structure, the modeled capacitance and resistance parameters of the electrical equivalent circuit describing the p-n junction-based biochips depend linearly on the number of bacteria in the ring top electrode region, which successfully proves the potential performance of p-n junction-based Si biochips in observing the bacterial suspension. The proposed p-n junction-based biochips reveal perspective applications in medicine and biology for diagnosis, monitoring, management, and treatment of diseases.

Loading...
Thumbnail Image
Item

TopUp SERS substrates with integrated internal standard

2018, Patze, Sophie, Hübner, Uwe, Weber, Karina, Cialla-May, Dana, Popp, Jürgen

Surface-enhanced Raman spectroscopy (SERS) is known as a molecular-specific and highly sensitive method. In order to enable the routine application of SERS, powerful SERS substrates are of great importance. Within this manuscript, a TopUp SERS substrate is introduced which is fabricated by a top-down process based on microstructuring as well as a bottom-up generation of silver nanostructures. The Raman signal of the support material acts as an internal standard in order to improve the quantification capabilities. The analyte molecule coverage of sulfamethoxazole on the surface of the nanostructures is characterized by the SERS signal evolution fitted by a Langmuir–Freundlich isotherm.

Loading...
Thumbnail Image
Item

Nanograting-Enhanced Optical Fibers for Visible and Infrared Light Collection at Large Input Angles

2021, Wang, Ning, Zeisberger, Matthias, Hübner, Uwe, Schmidt, Markus A.

The efficient incoupling of light into particular fibers at large angles is essential for a multitude of applications; however, this is difficult to achieve with commonly used fibers due to low numerical aperture. Here, we demonstrate that commonly used optical fibers functionalized with arrays of metallic nanodots show substantially improved large-angle light-collection performances at multiple wavelengths. In particular, we show that at visible wavelengths, higher diffraction orders contribute significantly to the light-coupling efficiency, independent of the incident polarization, with a dominant excitation of the fundamental mode. The experimental observation is confirmed by an analytical model, which directly suggests further improvement in incoupling efficiency through the use of powerful nanostructures such as metasurface or dielectric gratings. Therefore, our concept paves the way for high-performance fiber-based optical devices and is particularly relevant within the context of endoscopic-type applications in life science and light collection within quantum technology.

Loading...
Thumbnail Image
Item

Nanoboomerang-based inverse metasurfaces - a promising path towards ultrathin photonic devices for transmission operation

2017, Zeisberger, Matthias, Schneidewind, Henrik, Hübner, Uwe, Popp, Jürgen, Schmidt, Markus A.

Metasurfaces have revolutionized photonics due to their ability to shape phase fronts as requested and to tune beam directionality using nanoscale metallic or dielectric scatterers. Here we reveal inverse metasurfaces showing superior properties compared to their positive counterparts if transmission mode operation is considered. The key advantage of such slot-type metasurfaces is the strong reduction of light in the parallel-polarization state, making the crossed-polarization, being essential for metasurface operation, dominant and highly visible. In the experiment, we show an up to four times improvement in polarization extinction for the individual metasurface element geometry consisting of deep subwavelength nanoboomerangs with feature sizes of the order of 100 nm. As confirmed by simulations, strong plasmonic hybridization yields two spectrally separated plasmonic resonances, ultimately allowing for the desired phase and scattering engineering in transmission. Due to the design flexibility of inverse metasurfaces, a large number of highly integrated ultra-flat photonic elements can be envisioned, examples of which include monolithic lenses for telecommunications and spectroscopy, beam shaper or generator for particle trapping or acceleration or sophisticated polarization control for microscopy.

Loading...
Thumbnail Image
Item

Surface enhanced Raman spectroscopy-based evaluation of the membrane protein composition of the organohalide-respiring Sulfurospirillum multivorans

2021, Cialla-May, Dana, Gadkari, Jennifer, Winterfeld, Andreea, Hübner, Uwe, Weber, Karina, Diekert, Gabriele, Schubert, Torsten, Goris, Tobias, Popp, Jürgen

Bacteria often employ different respiratory chains that comprise membrane proteins equipped with various cofactors. Monitoring the protein inventory that is present in the cells under a given cultivation condition is often difficult and time-consuming. One example of a metabolically versatile bacterium is the microaerophilic organohalide-respiring Sulfurospirillum multivorans. Here, we used surface enhanced Raman spectroscopy (SERS) to quickly identify the cofactors involved in the respiration of S. multivorans. We cultured the organism with either tetrachloroethene (perchloroethylene, PCE), fumarate, nitrate, or oxygen as electron acceptors. Because the corresponding terminal reductases of the four different respiratory chains harbor different cofactors, specific fingerprint signals in SERS were expected. Silver nanostructures fabricated by means of electron beam lithography were coated with the membrane fractions extracted from the four S. multivorans cultivations, and SERS spectra were recorded. In the case of S. multivorans cultivated with PCE, the recorded SERS spectra were dominated by Raman peaks specific for Vitamin B12. This is attributed to the high abundance of the PCE reductive dehalogenase (PceA), the key enzyme in PCE respiration. After cultivation with oxygen, fumarate, or nitrate, no Raman spectral features of B12 were found. © 2020 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons Ltd

Loading...
Thumbnail Image
Item

Direct supercritical angle localization microscopy for nanometer 3D superresolution

2021, Dasgupta, Anindita, Deschamps, Joran, Matti, Ulf, Hübner, Uwe, Becker, Jan, Strauss, Sebastian, Jungmann, Ralf, Heintzmann, Rainer, Ries, Jonas

3D single molecule localization microscopy (SMLM) is an emerging superresolution method for structural cell biology, as it allows probing precise positions of proteins in cellular structures. In supercritical angle localization microscopy (SALM), z-positions of single fluorophores are extracted from the intensity of supercritical angle fluorescence, which strongly depends on their distance to the coverslip. Here, we realize the full potential of SALM and improve its z-resolution by more than four-fold compared to the state-of-the-art by directly splitting supercritical and undercritical emission, using an ultra-high NA objective, and applying fitting routines to extract precise intensities of single emitters. We demonstrate nanometer isotropic localization precision on DNA origami structures, and on clathrin coated vesicles and microtubules in cells, illustrating the potential of SALM for cell biology.

Loading...
Thumbnail Image
Item

1D p–n Junction Electronic and Optoelectronic Devices from Transition Metal Dichalcogenide Lateral Heterostructures Grown by One-Pot Chemical Vapor Deposition Synthesis

2021, Najafidehaghani, Emad, Gan, Ziyang, George, Antony, Lehnert, Tibor, Ngo, Gia Quyet, Neumann, Christof, Bucher, Tobias, Staude, Isabelle, Kaiser, David, Vogl, Tobias, Hübner, Uwe, Kaiser, Ute, Eilenberger, Falk, Turchanin, Andrey

Lateral heterostructures of dissimilar monolayer transition metal dichalcogenides provide great opportunities to build 1D in-plane p–n junctions for sub-nanometer thin low-power electronic, optoelectronic, optical, and sensing devices. Electronic and optoelectronic applications of such p–n junction devices fabricated using a scalable one-pot chemical vapor deposition process yielding MoSe2-WSe2 lateral heterostructures are reported here. The growth of the monolayer lateral heterostructures is achieved by in situ controlling the partial pressures of the oxide precursors by a two-step heating protocol. The grown lateral heterostructures are characterized structurally and optically using optical microscopy, Raman spectroscopy/microscopy, and photoluminescence spectroscopy/microscopy. High-resolution transmission electron microscopy further confirms the high-quality 1D boundary between MoSe2 and WSe2 in the lateral heterostructure. p–n junction devices are fabricated from these lateral heterostructures and their applicability as rectifiers, solar cells, self-powered photovoltaic photodetectors, ambipolar transistors, and electroluminescent light emitters are demonstrated. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH