Search Results

Now showing 1 - 10 of 11
  • Item
    Analysis of electronic properties frommagnetotransport measurements on Ba(Fe1-xNix)2As2 thin films
    (Basel : MDPI AG, 2020) Shipulin, I.; Richter, S.; Thomas, A.A.; Nielsch, K.; Hühne, R.; Martovitsky, V.
    We performed a detailed structural, magnetotransport, and superconducting analysis of thin epitaxial Ba(Fe1-xNix)2As2 films with Ni doping of x = 0.05 and 0.08, as prepared by pulsed laser deposition. X-ray diffraction studies demonstrate the high crystalline perfection of the films, which have a similar quality to single crystals. Furthermore, magnetotransport measurements of the films were performed in magnetic fields up to 9 T. The results we used to estimate the density of electronic states at the Fermi level, the coefficient of electronic heat capacity, and other electronic parameters for this compound, in their dependence on the dopant concentration within the framework of the Ginzburg-Landau-Abrikosov-Gorkov theory. The comparison of the determined parameters with measurement data on comparable Ba(Fe1-xNix)2As2 single crystals shows good agreement, which confirms the high quality of the obtained films.
  • Item
    Pulsed laser deposition of thick BaHfO3-doped YBa 2Cu307-δ films on highly alloyed textured Ni-W tapes
    (Bristol : Institute of Physics Publishing, 2014) Sieger, M.; Hänisch, J.; Iida, K.; Gaitzsch, U.; Rodig, C.; Schultz, L.; Holzapfel, B.; Hühne, R.
    YBa2Cu3O7-δ (YBCO) films with a thickness of up to 3 μm containing nano-sized BaHfO3 (BHO) have been grown on Y2O3/Y-stabilized ZrO2/CeO 2 buffered Ni-9at% W tapes by pulsed laser deposition (PLD). Structural characterization by means of X-ray diffraction confirmed that the YBCO layer grew epitaxial. A superconducting transition temperature T c of about 89 K with a transition width of 1 K was determined, decreasing with increasing BHO content. Critical current density in self-field and at 0.3 T increased with increasing dopant level.
  • Item
    Investigation of the strain-sensitive superconducting transition of BaFe1.8Co0.2As2 thin films utilizing piezoelectric substrates
    (Milton Park : Taylor & Francis, 2014) Trommler, S.; Hänisch, J.; Iida, K.; Kurth, F.; Schultz, L.; Holzapfel, B.; Hühne, R.
    The preparation of biaxially textured BaFe1.8Co0.2As2 thin films has been optimized on MgO single crystals and transfered to piezoelectric (001) Pb(Mg1/3Nb2/3)0.72Ti0.28O3 substrates. By utilizing the inverse piezoelectric effect the lattice parameter of these substrates can be controlled applying an electric field, leading to a induction of biaxial strain into the superconducting layer. High electric fields were used to achieve a total strain of up to 0.05% at low temperatures. A sharpening of the resistive transition and a shift of about 0.6 K to higher temperatures was found at a compressive strain of 0.035%.
  • Item
    Towards a reliable bridge joint between REBCO coated conductors
    (Bristol : IOP Publ., 2020) Kirchner, A.; Nielsch, K.; Hühne, R.
    REBa2Cu3O7-x (REBCO; RE = Y, Gd) coated conductor wires are commercially available up to a length of about 1 km. However, for large-scale devices like superconducting coils for high-field magnets several kilometres of a coated conductors are required. Therefore, it is desirable to use joints, which exhibit similar superconducting properties as the coated conductor itself. In this study, we jointed commercial REBCO coated conductors by a two-step procedure. At first, a superconducting soldering solution was developed and deposited on unstabilized coated conductors via chemical solution deposition. The soldering precursor is based on a Cu-rich solution with a metal cation ratio Y:Ba:Cu of 1:2:4. Secondly, a piece of the coated conductor was delaminated between the superconducting and the buffer layer and used as bridge between two other conductors covered with the soldering layer. Annealing the resulting bridge joint under pressure results in a mechanical stable configuration. © Published under licence by IOP Publishing Ltd.
  • Item
    Combinatorial synthesis of (YxGd1-x)Ba2Cu3Ox superconducting thin films
    (Amsterdam [u.a.] : Elsevier, 2012) Kirchner, A.; Erbe, M.; Freudenberg, T.; Hühne, R.; Feys, J.; Van Driessche, I.; Schultz, L.; Holzapfel, B.
    Environmentally friendly water-based YBa2Cu3Ox (YBCO) and GdBa2Cu3Ox (GdBCO) precursor solutions were synthesized to realize thin films by chemical solution deposition. Pure YBCO and GdBCO precursor solutions were used for ink plotting on SrTiO3 substrates and subsequent thermal treatment at the corresponding crystallization temperature. Phase formation of Gd123 requires a higher crystallization temperature of 840 °C compared to the Y123 phase. The critical temperature of YBCO films is about 92 K with a sharp transition into the superconducting state. Micro liter sized ink volumes of YBCO and GdBCO were successfully mixed for two-dimensional ink plotting of a (YxGd1-x)Ba2Cu3Ox film library. A homogeneous surface and no indication of a-axis growth were found in all mixed films.
  • Item
    Magnetically induced anisotropy of flux penetration into strong-pinning superconductor/ferromagnet bilayers
    (Bristol : Institute of Physics Publishing, 2019) Simmendinger, J.; Hanisch, J.; Bihler, M.; Ionescu, A.M.; Weigand, M.; Sieger, M.; Hühne, R.; Rijckaert, H.; Van Driessche, I.; Schütz, G.; Albrecht, J.
    We studied the impact of soft ferromagnetic permalloy (Py) on the shielding currents in a strong-pinning superconductor - YBa2Cu3O7-δ with Ba2Y(Nb/Ta)O6 nano-precipitates - by means of scanning transmission x-ray microscopy. Typically and in particular when in the thin film limit, superconductor/ferromagnet (SC/FM) bilayers exhibit isotropic properties of the flux line ensemble at all temperatures. However, in elements with small aspect ratio a significant anisotropy in flux penetration is observed. We explain this effect by local in-plane fields arising from anisotropic magnetic stray fields originated by the ferromagnet. This leads to direction-dependent motion of magnetic vortices inside the SC/FM bilayer. Our results demonstrate that small variations of the magnetic properties can have huge impact on the superconductor.
  • Item
    Universal scaling behavior of the upper critical field in strained FeSe0.7Te0.3 thin films
    (Bristol : Institute of Physics Publishing, 2018) Yuan, F.; Grinenko, V.; Iida, K.; Richter, S.; Pukenas, A.; Skrotzki, W.; Sakoda, M.; Naito, M.; Sala, A.; Putti, M.; Yamashita, A.; Takano, Y.; Shi, Z.; Nielsch, K.; Hühne, R.
    Revealing the universal behaviors of iron-based superconductors (FBS) is important to elucidate the microscopic theory of superconductivity. In this work, we investigate the effect of in-plane strain on the slope of the upper critical field H c2 at the superconducting transition temperature T c (i.e. -dH c2/dT) for FeSe0.7Te0.3 thin films. The in-plane strain tunes T c in a broad range, while the composition and disorder are almost unchanged. We show that -dH c2/dT scales linearly with T c, indicating that FeSe0.7Te0.3 follows the same universal behavior as observed for pnictide FBS. The observed behavior is consistent with a multiband superconductivity paired by interband interaction such as sign change s ± superconductivity.
  • Item
    Tuning functional properties by plastic deformation
    (Milton Park : Taylor & Francis, 2009) Kwon, A.R.; Neu, V.; Matias, V.; Hänisch, J.; Hühne, R.; Freudenberger, J.; Holzapfel, B.; Schultz, L.; Fähler, S.
    It is well known that a variation of lattice constants can strongly influence the functional properties of materials. Lattice constants can be influenced by external forces; however, most experiments are limited to hydrostatic pressure or biaxial stress. Here, we present an experimental approach that imposes a large uniaxial strain on epitaxially grown films in order to tune their functional properties. A substrate made of a ductile metal alloy covered with a biaxially oriented MgO layer is used as a template for growth of epitaxial films. By applying an external plastic strain, we break the symmetry within the substrate plane compared to the as-deposited state. The consequences of 2% plastic strain are examined for an epitaxial hard magnetic Nd2Fe14B film and are found to result in an elliptical distortion of the in-plane anisotropy below the spin-reorientation temperature. Our approach is a versatile method to study the influence of large plastic strain on various materials, as the MgO(001) layer used is a common substrate for epitaxial growth.
  • Item
    Reversible shift in the superconducting transition for La1.85Sr0.15CuO4 and BaFe1.8Co0.2As2 using piezoelectric substrates
    (Milton Park : Taylor & Francis, 2010) Trommler, S.; Hühne, R.; Iida, K.; Pahlke, P.; Haindl, S.; Schultz, L.; Holzapfel, B.
    The use of piezoelectric substrates enables dynamic observation of the strain-dependent properties of functional materials. Based on studies with La1.85Sr0.15CuO4 (LSCO), we extended this approach to the iron arsenic superconductors represented by BaFe2− xCoxAs2 to investigate strain-driven changes in detail. We demonstrate that epitaxial thin films can be prepared on (001) Pb(Mg1/3Nb2/3)0.72Ti0.28O3 substrates using pulsed laser deposition. The structural and electric properties of grown films were characterized in detail. A reversible shift of the superconducting transition of 0.4 K for LSCO and 0.2 K for BaFe1.8Co0.2As2 was observed on applying biaxial strains of 0.022 and 0.017%, respectively.
  • Item
    Magnetic granularity in pulsed laser deposited YBCO films on technical templates at 5 K
    (Bristol : IOP Publ., 2017-9-4) Lao, M.; Hecher, J.; Pahlke, P.; Sieger, M.; Hühne, R.; Eisterer, M.
    The manifestation of granularity in the superconducting properties of pulsed laser deposited YBCO films on commercially available metallic templates was investigated by scanning Hall probe microscopy at 5 K and was related to local orientation mapping of the YBCO layer. The YBCO films on stainless steel templates with a textured buffer layer of yttrium stabilized ZrO2 grown by alternating beam assisted deposition have a mean grain size of less than with a sharp texture. This results in a homogeneous trapped field profile and spatial distribution of the current density. On the other hand, YBCO films on biaxially textured NiW substrates show magnetic granularity that persists down to a temperature of 5 K and up to an applied magnetic field of 4 T. The origin of the granular field profile is directly correlated to the microstructural properties of the YBCO layer adopted from the granular NiW substrate which leads to a spatially inhomogeneous current density. Grain-to-grain in-plane tilts lead to grain boundaries that obstruct the current while out-of-plane tilts mainly affect the grain properties, resulting in areas with low . Hence, not all grain boundaries cause detrimental effects on since the orientation of individual NiW grains also contributes to observed inhomogeneity and granularity.