Search Results

Now showing 1 - 2 of 2
  • Item
    Extreme levels of Canadian wildfire smoke in the stratosphere over central Europe on 21-22 August 2017
    (Katlenburg-Lindau : EGU, 2018) Ansmann, Albert; Baars, Holger; Chudnovsky, Alexandra; Mattis, Ina; Veselovskii, Igor; Haarig, Moritz; Seifert, Patric; Engelmann, Ronny; Wandinger, Ulla
    Light extinction coefficients of 500 Mm1, about 20 times higher than after the Pinatubo volcanic eruptions in 1991, were observed by European Aerosol Research Lidar Network (EARLINET) lidars in the stratosphere over central Europe on 21-22 August 2017. Pronounced smoke layers with a 1-2 km vertical extent were found 2-5 km above the local tropopause. Optically dense layers of Canadian wildfire smoke reached central Europe 10 days after their injection into the upper troposphere and lower stratosphere which was caused by rather strong pyrocumulonimbus activity over western Canada. The smoke-related aerosol optical thickness (AOT) identified by lidar was close to 1.0 at 532 nm over Leipzig during the noon hours on 22 August 2017. Smoke particles were found throughout the free troposphere (AOT of 0.3) and in the pronounced 2 km thick stratospheric smoke layer at an altitude of 14-16 km (AOT of 0.6). The lidar observations indicated peak mass concentrations of 70-100 μgm-3 in the stratosphere. In addition to the lidar profiles, we analyzed Moderate Resolution Imaging Spectroradiometer (MODIS) fire radiative power (FRP) over Canada, and the distribution of MODIS AOT and Ozone Monitoring Instrument (OMI) aerosol index across the North Atlantic. These instruments showed a similar pattern and a clear link between the western Canadian fires and the aerosol load over Europe. In this paper, we also present Aerosol Robotic Network (AERONET) sun photometer observations, compare photometer and lidar-derived AOT, and discuss an obvious bias (the smoke AOT is too low) in the photometer observations. Finally, we compare the strength of this recordbreaking smoke event (in terms of the particle extinction coefficient and AOT) with major and moderate volcanic events observed over the northern midlatitudes.
  • Item
    Profiles of cloud condensation nuclei, dust mass concentration, and ice-nucleating-particle-relevant aerosol properties in the Saharan Air Layer over Barbados from polarization lidar and airborne in situ measurements
    (Katlenburg-Lindau : EGU, 2019) Haarig, Moritz; Walser, Adrian; Ansmann, Albert; Dollner, Maximilian; Althausen, Dietrich; Sauer, Daniel; Farrell, David; Weinzierl, Bernadett
    The present study aims to evaluate lidar retrievals of cloud-relevant aerosol properties by using polarization lidar and coincident airborne in situ measurements in the Saharan Air Layer (SAL) over the Barbados region. Vertical profiles of the number concentration of cloud condensation nuclei (CCN), large particles (diameter d > 500 nm), surface area, mass, and ice-nucleating particle (INP) concentration are derived from the lidar measurements and compared with CCN concentrations and the INP-relevant aerosol properties measured in situ with aircraft. The measurements were performed in the framework of the Saharan Aerosol Longrange Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in summer 2013. The CCN number concentrations derived from lidar observations were up to a factor of 2 higher than the ones measured in situ aboard the research aircraft Falcon. Possible reasons for the difference are discussed. The number concentration of particles with a dry radius of more than 250 nm and the surface-area concentration obtained from the lidar observations and used as input for the INP parameterizations agreed well (< 30 %-50 % deviation) with the aircraft measurements. In a pronounced lofted dust layer during summer (10 July 2013), the lidar retrieval yielded 100-300 CCN per cubic centimeter at 0.2 % water supersaturation and 10-200 INPs per liter at-25?C. Excellent agreement was also obtained in the comparison of mass concentration profiles. During the SALTRACE winter campaign (March 2014), the dust layer from Africa was mixed with smoke particles which dominated the CCN number concentration. This example highlights the unique lidar potential to separate smoke and dust contributions to the CCN reservoir and thus to identify the sensitive role of smoke in trade wind cumuli developments over the tropical Atlantic during the winter season. © 2017 Georg Thieme Verlag. All rights reserved.