Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Nanographene-Based Heterojunctions for High-Performance Organic Phototransistor Memory Devices.

2023, Bai, Shaoling, Yang, Lin, Haase, Katherina, Wolansky, Jakob, Zhang, Zongbao, Tseng, Hsin, Talnack, Felix, Kress, Joshua, Andrade, Jonathan Perez, Benduhn, Johannes, Ma, Ji, Feng, Xinliang, Hambsch, Mike, Mannsfeld, Stefan C. B.

Organic phototransistors can enable many important applications such as nonvolatile memory, artificial synapses, and photodetectors in next-generation optical communication and wearable electronics. However, it is still a challenge to achieve a big memory window (threshold voltage response ∆V ) for phototransistors. Here, a nanographene-based heterojunction phototransistor memory with large ∆V responses is reported. Exposure to low intensity light (25.7 µW cm ) for 1 s yields a memory window of 35 V, and the threshold voltage shift is found to be larger than 140 V under continuous light illumination. The device exhibits both good photosensitivity (3.6 × 10 ) and memory properties including long retention time (>1.5 × 10  s), large hysteresis (45.35 V), and high endurance for voltage-erasing and light-programming. These findings demonstrate the high application potential of nanographenes in the field of optoelectronics. In addition, the working principle of these hybrid nanographene-organic structured heterojunction phototransistor memory devices is described which provides new insight into the design of high-performance organic phototransistor devices.

Loading...
Thumbnail Image
Item

Analysis of the Annealing Budget of Metal Oxide Thin-Film Transistors Prepared by an Aqueous Blade-Coating Process

2022, Tang, Tianyu, Dacha, Preetam, Haase, Katherina, Kreß, Joshua, Hänisch, Christian, Perez, Jonathan, Krupskaya, Yulia, Tahn, Alexander, Pohl, Darius, Schneider, Sebastian, Talnack, Felix, Hambsch, Mike, Reineke, Sebastian, Vaynzof, Yana, Mannsfeld, Stefan C. B.

Metal oxide (MO) semiconductors are widely used in electronic devices due to their high optical transmittance and promising electrical performance. This work describes the advancement toward an eco-friendly, streamlined method for preparing thin-film transistors (TFTs) via a pure water-solution blade-coating process with focus on a low thermal budget. Low temperature and rapid annealing of triple-coated indium oxide thin-film transistors (3C-TFTs) and indium oxide/zinc oxide/indium oxide thin-film transistors (IZI-TFTs) on a 300 nm SiO2 gate dielectric at 300 °C for only 60 s yields devices with an average field effect mobility of 10.7 and 13.8 cm2 V−1 s−1, respectively. The devices show an excellent on/off ratio (>106), and a threshold voltage close to 0 V when measured in air. Flexible MO-TFTs on polyimide substrates with AlOx dielectrics fabricated by rapid annealing treatment can achieve a remarkable mobility of over 10 cm2 V−1 s−1 at low operating voltage. When using a longer post-coating annealing period of 20 min, high-performance 3C-TFTs (over 18 cm2 V−1 s−1) and IZI-TFTs (over 38 cm2 V−1 s−1) using MO semiconductor layers annealed at 300 °C are achieved.