Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

PowerDuck: A GOOSE Data Set of Cyberattacks in Substations

2022-08-08, Zemanek, Sven, Hacker, Immanuel, Wolsing, Konrad, Wagner, Eric, Henze, Martin, Serror, Martin

Power grids worldwide are increasingly victims of cyberattacks, where attackers can cause immense damage to critical infrastructure. The growing digitalization and networking in power grids combined with insufficient protection against cyberattacks further exacerbate this trend. Hence, security engineers and researchers must counter these new risks by continuously improving security measures. Data sets of real network traffic during cyberattacks play a decisive role in analyzing and understanding such attacks. Therefore, this paper presents PowerDuck, a publicly available security data set containing network traces of GOOSE communication in a physical substation testbed. The data set includes recordings of various scenarios with and without the presence of attacks. Furthermore, all network packets originating from the attacker are clearly labeled to facilitate their identification. We thus envision PowerDuck improving and complementing existing data sets of substations, which are often generated synthetically, thus enhancing the security of power grids.

Loading...
Thumbnail Image
Item

On specification-based cyber-attack detection in smart grids

2022, Sen, Ömer, van der Velde, Dennis, Lühman, Maik, Sprünken, Florian, Hacker, Immanuel, Ulbig, Andreas, Andres, Michael, Henze, Martin

The transformation of power grids into intelligent cyber-physical systems brings numerous benefits, but also significantly increases the surface for cyber-attacks, demanding appropriate countermeasures. However, the development, validation, and testing of data-driven countermeasures against cyber-attacks, such as machine learning-based detection approaches, lack important data from real-world cyber incidents. Unlike attack data from real-world cyber incidents, infrastructure knowledge and standards are accessible through expert and domain knowledge. Our proposed approach uses domain knowledge to define the behavior of a smart grid under non-attack conditions and detect attack patterns and anomalies. Using a graph-based specification formalism, we combine cross-domain knowledge that enables the generation of whitelisting rules not only for statically defined protocol fields but also for communication flows and technical operation boundaries. Finally, we evaluate our specification-based intrusion detection system against various attack scenarios and assess detection quality and performance. In particular, we investigate a data manipulation attack in a future-orientated use case of an IEC 60870-based SCADA system that controls distributed energy resources in the distribution grid. Our approach can detect severe data manipulation attacks with high accuracy in a timely and reliable manner.

Loading...
Thumbnail Image
Item

Cybersecurity in Power Grids: Challenges and Opportunities

2021, Krause, Tim, Ernst, Raphael, Klaer, Benedikt, Hacker, Immanuel, Henze, Martin

Increasing volatilities within power transmission and distribution force power grid operators to amplify their use of communication infrastructure to monitor and control their grid. The resulting increase in communication creates a larger attack surface for malicious actors. Indeed, cyber attacks on power grids have already succeeded in causing temporary, large-scale blackouts in the recent past. In this paper, we analyze the communication infrastructure of power grids to derive resulting fundamental challenges of power grids with respect to cybersecurity. Based on these challenges, we identify a broad set of resulting attack vectors and attack scenarios that threaten the security of power grids. To address these challenges, we propose to rely on a defense-in-depth strategy, which encompasses measures for (i) device and application security, (ii) network security, and (iii) physical security, as well as (iv) policies, procedures, and awareness. For each of these categories, we distill and discuss a comprehensive set of state-of-the art approaches, as well as identify further opportunities to strengthen cybersecurity in interconnected power grids.