Search Results

Now showing 1 - 2 of 2
  • Item
    Understanding the Coupling Effect between Lignin and Polybutadiene Elastomer
    (Basel : MDPI, 2021) Hait, Sakrit; De, Debapriya; Ghosh, Prasenjit; Chanda, Jagannath; Mukhopadhyay, Rabindra; Dasgupta, Saikat; Sallat, Aladdin; Al Aiti, Muhannad; Stöckelhuber, Klaus Werner; Wießner, Sven; Heinrich, Gert; Das, Amit
    From an environmental and economic viewpoint, it is a win–win strategy to use materials obtained from renewable resources for the production of high-performance elastomer composites. Lignin, being a renewable biomass, was employed as a functional filler material to obtain an elastomer composite with a higher degree of mechanical performance. In the presence of a suitable coupling agent, an elevated temperature was preferred for the reactive mixing of lignin with polybutadiene rubber (BR). It is quite fascinating that the mechanical performance of this composite was comparable with carbon black-filled composites. The extraordinary reinforcing behavior of lignin in the BR matrix was understood by an available model of rubber reinforcement. In rubber composite preparation, the interfacial interaction between polybutadiene rubber and lignin in the presence of a coupling agent enabled the efficient dispersion of lignin into the rubber matrix, which is responsible for the excellent mechanical properties of the rubber composites. The rubber composites thus obtained may lead to the development of a sustainable and cost-effective end product with reliable performance. This novel approach could be implemented in other type of elastomeric materials, enabling a genuine pathway toward a sustainable globe.
  • Item
    Effect of prestrain on the actuation characteristics of dielectric elastomers
    (Basel : MDPI, 2020) Kumar, Mayank; Sharma, Anutsek; Hait, Sakrit; Wießner, Sven; Heinrich, Gert; Arief, Injamamul; Naskar, Kinsuk; Stöckelhuber, Klaus Werner; Das, Amit
    Dielectric elastomers (DEs) represent a class of electroactive polymers that deform due to electrostatic attraction between oppositely charged electrodes under a varying electric field. Over the last couple of decades, DEs have garnered considerable attention due to their much-coveted actuation properties. As far as the precise measurement systems are concerned, however, there is no standard instrument or interface to quantify various related parameters, e.g., actuation stress, strain, voltage and creeping etc. In this communication, we present an in-depth study of dielectric actuation behavior of dielectric rubbers by the state-of-the-art “Dresden Smart Rubber Analyzer” (DSRA), designed and developed in-house. The instrument allowed us to elucidate various factors that could influence the output efficiency of the DEs. Herein, several non-conventional DEs such as hydrogenated nitrile rubber, nitrile rubber with different acrylonitrile contents, were employed as an electro-active matrix. The effect of viscoelastic creeping on the prestrain, molecular architecture of the matrices, e.g., nitrile content of nitrile-butadiene rubber (NBR) etc., are also discussed in detail.