Search Results

Now showing 1 - 3 of 3
  • Item
    A Two-Dimensional Polyimide-Graphene Heterostructure with Ultra-fast Interlayer Charge Transfer
    (Weinheim : Wiley-VCH, 2021) Liu, Kejun; Li, Jiang; Qi, Haoyuan; Hambsch, Mike; Rawle, Jonathan; Vázquez, Adrián Romaní; Nia, Ali Shaygan; Pashkin, Alexej; Schneider, Harald; Polozij, Mirosllav; Heine, Thomas; Helm, Manfred; Mannsfeld, Stefan C.B.; Kaiser, Ute; Dong, Renhao; Feng, Xinliang
    Two-dimensional polymers (2DPs) are a class of atomically/molecularly thin crystalline organic 2D materials. They are intriguing candidates for the development of unprecedented organic–inorganic 2D van der Waals heterostructures (vdWHs) with exotic physicochemical properties. In this work, we demonstrate the on-water surface synthesis of large-area (cm2), monolayer 2D polyimide (2DPI) with 3.1-nm lattice. Such 2DPI comprises metal-free porphyrin and perylene units linked by imide bonds. We further achieve a scalable synthesis of 2DPI-graphene (2DPI-G) vdWHs via a face-to-face co-assembly of graphene and 2DPI on the water surface. Remarkably, femtosecond transient absorption spectroscopy reveals an ultra-fast interlayer charge transfer (ca. 60 fs) in the resultant 2DPI-G vdWH upon protonation by acid, which is equivalent to that of the fastest reports among inorganic 2D vdWHs. Such large interlayer electronic coupling is ascribed to the interlayer cation–π interaction between 2DP and graphene. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    Short Excited-State Lifetimes Mediate Charge-Recombination Losses in Organic Solar Cell Blends with Low Charge-Transfer Driving Force
    (Weinheim : Wiley-VCH, 2021) Shivhare, Rishi; Moore, Gareth John; Hofacker, Andreas; Hutsch, Sebastian; Zhong, Yufei; Hambsch, Mike; Erdmann, Tim; Kiriy, Anton; Mannsfeld, Stefan C.B.; Ortmann, Frank; Banerji, Natalie
    A blend of a low-optical-gap diketopyrrolopyrrole polymer and a fullerene derivative, with near-zero driving force for electron transfer, is investigated. Using femtosecond transient absorption and electroabsorption spectroscopy, the charge transfer (CT) and recombination dynamics as well as the early-time transport are quantified. Electron transfer is ultrafast, consistent with a Marcus-Levich-Jortner description. However, significant charge recombination and unusually short excited (S1 ) and CT state lifetimes (≈14 ps) are observed. At low S1 -CT offset, a short S1 lifetime mediates charge recombination because: i) back-transfer from the CT to the S1 state followed by S1 recombination occurs and ii) additional S1 -CT hybridization decreases the CT lifetime. Both effects are confirmed by density functional theory calculations. In addition, relatively slow (tens of picoseconds) dissociation of charges from the CT state is observed, due to low local charge mobility. Simulations using a four-state kinetic model entailing the effects of energetic disorder reveal that the free charge yield can be increased from the observed 12% to 60% by increasing the S1 and CT lifetimes to 150 ps. Alternatively, decreasing the interfacial CT state disorder while increasing bulk disorder of free charges enhances the yield to 65% in spite of the short lifetimes.
  • Item
    Ultrasoft and High-Mobility Block Copolymers for Skin-Compatible Electronics
    (Weinheim : Wiley-VCH, 2020) Ditte, Kristina; Perez, Jonathan; Chae, Soosang; Hambsch, Mike; Al-Hussein, Mahmoud; Komber, Hartmut; Formanek, Peter; Mannsfeld, Stefan C.B.; Fery, Andreas; Kiriy, Anton; Lissel, Franziska
    Polymer semiconductors (PSCs) are an essential component of organic field-effect transistors (OFETs), but their potential for stretchable electronics is limited by their brittleness and failure susceptibility upon strain. Herein, a covalent connection of two state-of-the-art polymers—semiconducting poly-diketo-pyrrolopyrrole-thienothiophene (PDPP-TT) and elastomeric poly(dimethylsiloxane) (PDMS)—in a single triblock copolymer (TBC) chain is reported, which enables high charge carrier mobility and low modulus in one system. Three TBCs containing up to 65 wt% PDMS were obtained, and the TBC with 65 wt% PDMS content exhibits mobilities up to 0.1 cm2 V−1 s−1, in the range of the fully conjugated reference polymer PDPP-TT (0.7 cm2 V−1 s−1). The TBC is ultrasoft with a low elastic modulus (5 MPa) in the range of mammalian tissue. The TBC exhibits an excellent stretchability and extraordinary durability, fully maintaining the initial electric conductivity in a doped state after 1500 cycles to 50% strain. © 2020 The Authors. Advanced Materials published by Wiley-VCH GmbH