Search Results

Now showing 1 - 3 of 3
  • Item
    Carbon Nanotubes Hybrid Hydrogels for Environmental Remediation: Evaluation of Adsorption Efficiency under Electric Field
    (Basel : MDPI, 2021) Cirillo, Giuseppe; Curcio, Manuela; Madeo, Lorenzo Francesco; Iemma, Francesca; De Filpo, Giovanni; Hampel, Silke; Nicoletta, Fiore Pasquale
    The performance of Carbon Nanotubes hybrid hydrogels for environmental remediation was investigated using Methylene Blue (MB), Rhodamine B (RD), and Bengal Rose (BR) as model contaminating dyes. An acrylate hydrogel network with incorporated CNT was synthesized by photo-polymerization without any preliminary derivatization of CNT surface. Thermodynamics, isothermal and kinetic studies showed favorable sorption processes with the application of an external 12 V electric field found to be able to influence the amount of adsorbed dyes: stronger interactions with cationic MB molecules (qexp and q12exp of 19.72 and 33.45 mg g−1, respectively) and reduced affinity for anionic RD (qexp and q12exp of 28.93 and 13.06 mg g−1, respectively) and neutral BR (qexp and q12exp of 36.75 and 15.85 mg g−1, respectively) molecules were recorded. The influence of pH variation on dyes adsorption was finally highlighted by reusability studies, with the negligible variation of adsorption capacity after five repeated sorption cycles claiming for the suitability of the proposed systems as effective sorbent for wastewater treatment.
  • Item
    Photocatalytic Degradation of Some Phenolic Compounds Present in Olive Mill Wastewater
    (Ghaziabad : [Verlag nicht ermittelbar], 2018) Rimawi, Waleed H.; Salim, Hatim; Seder, Doaa; Ghunaim, Rasha; Hampel, Silke
    The olive oil industry in Palestine is an important and widely spread one and accomplished with the release of large amounts of olive-mills wastewater. This wastewater represents a significant environmental problem due to its high phenolic content. In this work, the photocatalytic degradation of the some phenolic compounds (gallic acid, oleuropein and resorcinol) present in olive-mills wastewater using the synthesized nanoparticles of mixed SnO2-MgO catalyst and solar irradiation was performed. The nanoparticles of mixed SnO2-MgO catalyst with different ratios were prepared by sol gel method using a modified procedure. The obtained particles were characterized by SEM and XRD. The particle size was determined as 4.32 ± 0.42 nm which is much smaller than those previously prepared by standard procedures. The degradation percentage of phenolic compounds was measured by UV spectrophotometry. The effect of time, catalyst amount and phenolic compound concentration on degradation efficiency was studied. The maximum degradation was achieved using SnO2-MgO (4:1) catalyst, 2.5 mg catalyst per 5 mL solution, within the time of 60-120 min and ranged from 51 to 90 % for different concentrations of phenolic compounds.
  • Item
    Carbon nanomaterials sensitize prostate cancer cells to docetaxel and mitomycin C via induction of apoptosis and inhibition of proliferation
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2017-6-23) Erdmann, Kati; Ringel, Jessica; Hampel, Silke; Wirth, Manfred P.; Fuessel, Susanne
    We have previously shown that carbon nanofibers (CNFs) and carbon nanotubes (CNTs) can sensitize prostate cancer (PCa) cells to platinum-based chemotherapeutics. In order to further verify this concept and to avoid a bias, the present study investigates the chemosensitizing potential of CNFs and CNTs to the conventional chemotherapeutics docetaxel (DTX) and mitomycin C (MMC), which have different molecular structures and mechanisms of action than platinum-based chemotherapeutics. DU-145 PCa cells were treated with DTX and MMC alone or in combination with the carbon nanomaterials. The impact of the monotreatments and the combinatory treatments on cellular function was then systematically analyzed by using different experimental approaches (viability, short-term and long-term proliferation, cell death rate). DTX and MMC alone reduced the viability of PCa cells to 94% and 68%, respectively, whereas a combined treatment with CNFs led to less than 30% remaining viable cells. Up to 17- and 7-fold higher DTX and MMC concentrations were needed in order to evoke a similar inhibition of viability as mediated by the combinatory treatments. In contrast, the dose of platinum-based chemotherapeutics could only be reduced by up to 3-fold by combination with carbon nanomaterials. Furthermore, combinatory treatments with CNFs led mostly to an additive inhibition of short- and long-term proliferation compared to the individual treatments. Also, higher cell death rates were observed in combinatory treatments than in monotreatments, e.g., a combination of MMC and CNFs more than doubled the cell death rate mediated by apoptosis. Combinations with CNTs showed a similar, but less pronounced impact on cellular functions. In summary, carbon nanomaterials in combination with DTX and MMC evoked additive to partly synergistic anti-tumor effects. CNFs and CNTs possess the ability to sensitize cancer cells to a wide range of structurally diverse chemotherapeutics and thus represent an interesting option for the development of multimodal cancer therapies. Co-administration of chemotherapeutics with carbon nanomaterials could result in a reduction of the chemotherapeutic dosage and thus limit systemic side effects.