Search Results

Now showing 1 - 6 of 6
  • Item
    Carbon Nanotubes Hybrid Hydrogels for Environmental Remediation: Evaluation of Adsorption Efficiency under Electric Field
    (Basel : MDPI, 2021) Cirillo, Giuseppe; Curcio, Manuela; Madeo, Lorenzo Francesco; Iemma, Francesca; De Filpo, Giovanni; Hampel, Silke; Nicoletta, Fiore Pasquale
    The performance of Carbon Nanotubes hybrid hydrogels for environmental remediation was investigated using Methylene Blue (MB), Rhodamine B (RD), and Bengal Rose (BR) as model contaminating dyes. An acrylate hydrogel network with incorporated CNT was synthesized by photo-polymerization without any preliminary derivatization of CNT surface. Thermodynamics, isothermal and kinetic studies showed favorable sorption processes with the application of an external 12 V electric field found to be able to influence the amount of adsorbed dyes: stronger interactions with cationic MB molecules (qexp and q12exp of 19.72 and 33.45 mg g−1, respectively) and reduced affinity for anionic RD (qexp and q12exp of 28.93 and 13.06 mg g−1, respectively) and neutral BR (qexp and q12exp of 36.75 and 15.85 mg g−1, respectively) molecules were recorded. The influence of pH variation on dyes adsorption was finally highlighted by reusability studies, with the negligible variation of adsorption capacity after five repeated sorption cycles claiming for the suitability of the proposed systems as effective sorbent for wastewater treatment.
  • Item
    Systematic evaluation of oligodeoxynucleotide binding and hybridization to modified multi-walled carbon nanotubes
    (London : Biomed Central, 2017) Kaufmann, Anika; Hampel, Silke; Rieger, Christiane; Kunhardt, David; Schendel, Darja; Füssel, Susanne; Schwenzer, Bernd; Erdmann, Kati
    Background: In addition to conventional chemotherapeutics, nucleic acid-based therapeutics like antisense oligodeoxynucleotides (AS-ODN) represent a novel approach for the treatment of bladder cancer (BCa). An efficient delivery of AS-ODN to the urothelium and then into cancer cells might be achieved by the local application of multi-walled carbon nanotubes (MWCNT). In the present study, pristine MWCNT and MWCNT functionalized with hydrophilic moieties were synthesized and then investigated regarding their physicochemical characteristics, dispersibility, biocompatibility, cellular uptake and mucoadhesive properties. Finally, their binding capacity for AS-ODN via hybridization to carrier strand oligodeoxynucleotides (CS-ODN), which were either non-covalently adsorbed or covalently bound to the different MWCNT types, was evaluated. Results: Pristine MWCNT were successfully functionalized with hydrophilic moieties (MWCNT-OH, -COOH, -NH2, -SH), which led to an improved dispersibility and an enhanced dispersion stability. A viability assay revealed that MWCNT-OH, MWCNT-NH2 and MWCNT-SH were most biocompatible. All MWCNT were internalized by BCa cells, whereupon the highest uptake was observed for MWCNT-OH with 40% of the cells showing an engulfment. Furthermore, all types of MWCNT could adhere to the urothelium of explanted mouse bladders, but the amount of the covered urothelial area was with 2-7% rather low. As indicated by fluorescence measurements, it was possible to attach CS-ODN by adsorption and covalent binding to functionalized MWCNT. Adsorption of CS-ODN to pristine MWCNT, MWCNT-COOH and MWCNT-NH2 as well as covalent coupling to MWCNT-NH2 and MWCNT-SH resulted in the best binding capacity and stability. Subsequently, therapeutic AS-ODN could be hybridized to and reversibly released from the CS-ODN coupled via both strategies to the functionalized MWCNT. The release of AS-ODN at experimental conditions (80 °C, buffer) was most effective from CS-ODN adsorbed to MWCNT-OH and MWCNT-NH2 as well as from CS-ODN covalently attached to MWCNT-COOH, MWCNT-NH2 and MWCNT-SH. Furthermore, we could exemplarily demonstrate that AS-ODN could be released following hybridization to CS-ODN adsorbed to MWCNT-OH at physiological settings (37 °C, urine). Conclusions: In conclusion, functionalized MWCNT might be used as nanotransporters in antisense therapy for the local treatment of BCa.
  • Item
    Photocatalytic Degradation of Some Phenolic Compounds Present in Olive Mill Wastewater
    (Ghaziabad : [Verlag nicht ermittelbar], 2018) Rimawi, Waleed H.; Salim, Hatim; Seder, Doaa; Ghunaim, Rasha; Hampel, Silke
    The olive oil industry in Palestine is an important and widely spread one and accomplished with the release of large amounts of olive-mills wastewater. This wastewater represents a significant environmental problem due to its high phenolic content. In this work, the photocatalytic degradation of the some phenolic compounds (gallic acid, oleuropein and resorcinol) present in olive-mills wastewater using the synthesized nanoparticles of mixed SnO2-MgO catalyst and solar irradiation was performed. The nanoparticles of mixed SnO2-MgO catalyst with different ratios were prepared by sol gel method using a modified procedure. The obtained particles were characterized by SEM and XRD. The particle size was determined as 4.32 ± 0.42 nm which is much smaller than those previously prepared by standard procedures. The degradation percentage of phenolic compounds was measured by UV spectrophotometry. The effect of time, catalyst amount and phenolic compound concentration on degradation efficiency was studied. The maximum degradation was achieved using SnO2-MgO (4:1) catalyst, 2.5 mg catalyst per 5 mL solution, within the time of 60-120 min and ranged from 51 to 90 % for different concentrations of phenolic compounds.
  • Item
    Chromium Trihalides CrX3 (X = Cl, Br, I): Direct Deposition of Micro- and Nanosheets on Substrates by Chemical Vapor Transport
    (Weinheim : Wiley-VCH, 2019) Grönke, Martin; Buschbeck, Benjamin; Schmidt, Peer; Valldor, Martin; Oswald, Steffen; Hao, Qi; Lubk, Axel; Wolf, Daniel; Steiner, Udo; Büchner, Bernd; Hampel, Silke
    The experimental observation of intrinsic ferromagnetism in single layered chromium trihalides CrX3 (X = Cl, Br, I) has gained outstanding attention recently due to their possible implementation in spintronic devices. However, the reproducible preparation of highly crystalline chromium(III) halide nanolayers without stacking faults is still an experimental challenge. As chromium trihalides consist of adjacent layers with weak interlayer coupling, the preparation of ultrathin CrX3 nanosheets directly on substrates via vapor transport proves as an advantageous synthesis technique. It is demonstrated that vapor growth of ultrathin highly crystalline CrX3 micro- and nanosheets succeeds directly on yttrium stabilized zirconia substrates in a one-step process via chemical vapor transport (CVT) in temperature gradients of 100 K (600 °C → 500 °C for CrCl3 and 650 °C → 550 °C for CrBr3 or CrI3) without a need for subsequent delamination. Due to simulation results, optimization of synthesis conditions is realized and phase pure CrX3 nanosheets with thicknesses ≤25 nm are obtained via short term CVT. The nanosheets morphology, crystallinity, and phase purity are analyzed by several techniques, including microscopy, diffraction, and spectroscopy. Furthermore, a potential subsequent delamination technique is demonstrated to give fast access to CrX3 monolayers using the example of CrCl3. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Carbon nanomaterials sensitize prostate cancer cells to docetaxel and mitomycin C via induction of apoptosis and inhibition of proliferation
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2017-6-23) Erdmann, Kati; Ringel, Jessica; Hampel, Silke; Wirth, Manfred P.; Fuessel, Susanne
    We have previously shown that carbon nanofibers (CNFs) and carbon nanotubes (CNTs) can sensitize prostate cancer (PCa) cells to platinum-based chemotherapeutics. In order to further verify this concept and to avoid a bias, the present study investigates the chemosensitizing potential of CNFs and CNTs to the conventional chemotherapeutics docetaxel (DTX) and mitomycin C (MMC), which have different molecular structures and mechanisms of action than platinum-based chemotherapeutics. DU-145 PCa cells were treated with DTX and MMC alone or in combination with the carbon nanomaterials. The impact of the monotreatments and the combinatory treatments on cellular function was then systematically analyzed by using different experimental approaches (viability, short-term and long-term proliferation, cell death rate). DTX and MMC alone reduced the viability of PCa cells to 94% and 68%, respectively, whereas a combined treatment with CNFs led to less than 30% remaining viable cells. Up to 17- and 7-fold higher DTX and MMC concentrations were needed in order to evoke a similar inhibition of viability as mediated by the combinatory treatments. In contrast, the dose of platinum-based chemotherapeutics could only be reduced by up to 3-fold by combination with carbon nanomaterials. Furthermore, combinatory treatments with CNFs led mostly to an additive inhibition of short- and long-term proliferation compared to the individual treatments. Also, higher cell death rates were observed in combinatory treatments than in monotreatments, e.g., a combination of MMC and CNFs more than doubled the cell death rate mediated by apoptosis. Combinations with CNTs showed a similar, but less pronounced impact on cellular functions. In summary, carbon nanomaterials in combination with DTX and MMC evoked additive to partly synergistic anti-tumor effects. CNFs and CNTs possess the ability to sensitize cancer cells to a wide range of structurally diverse chemotherapeutics and thus represent an interesting option for the development of multimodal cancer therapies. Co-administration of chemotherapeutics with carbon nanomaterials could result in a reduction of the chemotherapeutic dosage and thus limit systemic side effects.
  • Item
    Facile one-pot hydrothermal synthesis of a zinc oxide/curcumin nanocomposite with enhanced toxic activity against breast cancer cells
    (London : RSC Publishing, 2023) Madeo, Lorenzo Francesco; Schirmer, Christine; Cirillo, Giuseppe; Froeschke, Samuel; Hantusch, Martin; Curcio, Manuela; Nicoletta, Fiore Pasquale; Büchner, Bernd; Mertig, Michael; Hampel, Silke
    Zinc oxide/Curcumin (Zn(CUR)O) nanocomposites were prepared via hydrothermal treatment of Zn(NO3)2 in the presence of hexamethylenetetramine as a stabilizing agent and CUR as a bioactive element. Three ZnO : CUR ratios were investigated, namely 57 : 43 (Zn(CUR)O-A), 60 : 40 (Zn(CUR)O-B) and 81 : 19 (Zn(CUR)O-C), as assessed by thermogravimetric analyses, with an average hydrodynamic diameter of nanoaggregates in the range of 223 to 361 nm. The interaction of CUR with ZnO via hydroxyl and ketoenol groups (as proved by X-ray photoelectron spectroscopy analyses) was found to significantly modify the key properties of ZnO nanoparticles with the obtainment of a bilobed shape (as shown by scanning electron microscopy), and influenced the growth process of the composite nanoparticles as indicated by the varying particle sizes determined by powder X-ray diffraction. The efficacy of Zn(CUR)O as anticancer agents was evaluated on MCF-7 and MDA-MB-231 cancer cells, obtaining a synergistic activity with a cell viability depending on the CUR amount within the nanocomposite. Finally, the determination of reactive oxygen species production in the presence of Zn(CUR)O was used as a preliminary evaluation of the mechanism of action of the nanocomposites.