Search Results

Now showing 1 - 10 of 18
  • Item
    Polyphenols delivery by polymeric materials: challenges in cancer treatment
    (Abingdon : Taylor & Francis Group, 2017-2-3) Vittorio, Orazio; Curcio, Manuela; Cojoc, Monica; Goya, Gerardo F.; Hampel, Silke; Iemma, Francesca; Dubrovska, Anna; Cirillo, Giuseppe
    Nanotechnology can offer different solutions for enhancing the therapeutic efficiency of polyphenols, a class of natural products widely explored for a potential applicability for the treatment of different diseases including cancer. While possessing interesting anticancer properties, polyphenols suffer from low stability and unfavorable pharmacokinetics, and thus suitable carriers are required when planning a therapeutic protocol. In the present review, an overview of the different strategies based on polymeric materials is presented, with the aim to highlight the strengths and the weaknesses of each approach and offer a platform of ideas for researchers working in the field.
  • Item
    Carbon nanotubes filled with ferromagnetic materials
    (Basel : MDPI, 2010) Weissker, Uhland; Hampel, Silke; Leonhardt, Albrecht; Büchner, Bernd
    Carbon nanotubes (CNT) filled with ferromagnetic metals like iron, cobalt or nickel are new and very interesting nanostructured materials with a number of unique properties. In this paper we give an overview about different chemical vapor deposition (CVD) methods for their synthesis and discuss the influence of selected growth parameters. In addition we evaluate possible growth mechanisms involved in their formation. Moreover we show their identified structural and magnetic properties. On the basis of these properties we present different application possibilities. Some selected examples reveal the high potential of these materials in the field of medicine and nanotechnology.
  • Item
    Carbon Nanotubes Hybrid Hydrogels for Environmental Remediation: Evaluation of Adsorption Efficiency under Electric Field
    (Basel : MDPI, 2021) Cirillo, Giuseppe; Curcio, Manuela; Madeo, Lorenzo Francesco; Iemma, Francesca; De Filpo, Giovanni; Hampel, Silke; Nicoletta, Fiore Pasquale
    The performance of Carbon Nanotubes hybrid hydrogels for environmental remediation was investigated using Methylene Blue (MB), Rhodamine B (RD), and Bengal Rose (BR) as model contaminating dyes. An acrylate hydrogel network with incorporated CNT was synthesized by photo-polymerization without any preliminary derivatization of CNT surface. Thermodynamics, isothermal and kinetic studies showed favorable sorption processes with the application of an external 12 V electric field found to be able to influence the amount of adsorbed dyes: stronger interactions with cationic MB molecules (qexp and q12exp of 19.72 and 33.45 mg g−1, respectively) and reduced affinity for anionic RD (qexp and q12exp of 28.93 and 13.06 mg g−1, respectively) and neutral BR (qexp and q12exp of 36.75 and 15.85 mg g−1, respectively) molecules were recorded. The influence of pH variation on dyes adsorption was finally highlighted by reusability studies, with the negligible variation of adsorption capacity after five repeated sorption cycles claiming for the suitability of the proposed systems as effective sorbent for wastewater treatment.
  • Item
    Curcumin and Graphene Oxide Incorporated into Alginate Hydrogels as Versatile Devices for the Local Treatment of Squamous Cell Carcinoma
    (Basel : MDPI, 2022) Madeo, Lorenzo Francesco; Sarogni, Patrizia; Cirillo, Giuseppe; Vittorio, Orazio; Voliani, Valerio; Curcio, Manuela; Shai-Hee, Tyler; Büchner, Bernd; Mertig, Michael; Hampel, Silke
    With the aim of preparing hybrid hydrogels suitable for use as patches for the local treatment of squamous cell carcinoma (SCC)-affected areas, curcumin (CUR) was loaded onto graphene oxide (GO) nanosheets, which were then blended into an alginate hydrogel that was crosslinked by means of calcium ions. The homogeneous incorporation of GO within the polymer network, which was confirmed through morphological investigations, improved the stability of the hybrid system compared to blank hydrogels. The weight loss in the 100–170 °C temperature range was reduced from 30% to 20%, and the degradation of alginate chains shifted to higher temperatures. Moreover, GO enhanced the stability in water media by counteracting the de-crosslinking process of the polymer network. Cell viability assays showed that the loading of CUR (2.5% and 5% by weight) was able to reduce the intrinsic toxicity of GO towards healthy cells, while higher amounts were ineffective due to the antioxidant/prooxidant paradox. Interestingly, the CUR-loaded systems were found to possess a strong cytotoxic effect in SCC cancer cells, and the sustained CUR release (~50% after 96 h) allowed long-term anticancer efficiency to be hypothesized.
  • Item
    Magnetic Graphene Oxide Nanocarrier for Targeted Delivery of Cisplatin : A Perspective for Glioblastoma Treatment
    (Basel : MDPI, 2019) Makharza, Sami A.; Cirillo, Giuseppe; Vittorio, Orazio; Valli, Emanuele; Voli, Florida; Farfalla, Annafranca; Curcio, Manuela; Iemma, Francesca; Nicoletta, Fiore Pasquale; El-Gendy, Ahmed A.; Goya, Gerardo F.; Hampel, Silke
    Selective vectorization of Cisplatin (CisPt) to Glioblastoma U87 cells was exploited by the fabrication of a hybrid nanocarrier composed of magnetic γ-Fe2 O3 nanoparticles and nanographene oxide (NGO). The magnetic component, obtained by annealing magnetite Fe3 O4 and characterized by XRD measurements, was combined with NGO sheets prepared via a modified Hummer’s method. The morphological and thermogravimetric analysis proved the effective binding of γ-Fe2 O3 nanoparticles onto NGO layers. The magnetization measured under magnetic fields up to 7 Tesla at room temperature revealed superparamagnetic-like behavior with a maximum value of MS = 15 emu/g and coercivity HC ≈ 0 Oe within experimental error. The nanohybrid was found to possess high affinity towards CisPt, and a rather slow fractional release profile of 80% after 250 h. Negligible toxicity was observed for empty nanoparticles, while the retainment of CisPt anticancer activity upon loading into the carrier was observed, together with the possibility to spatially control the drug delivery at a target site. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Systematic evaluation of oligodeoxynucleotide binding and hybridization to modified multi-walled carbon nanotubes
    (London : Biomed Central, 2017) Kaufmann, Anika; Hampel, Silke; Rieger, Christiane; Kunhardt, David; Schendel, Darja; Füssel, Susanne; Schwenzer, Bernd; Erdmann, Kati
    Background: In addition to conventional chemotherapeutics, nucleic acid-based therapeutics like antisense oligodeoxynucleotides (AS-ODN) represent a novel approach for the treatment of bladder cancer (BCa). An efficient delivery of AS-ODN to the urothelium and then into cancer cells might be achieved by the local application of multi-walled carbon nanotubes (MWCNT). In the present study, pristine MWCNT and MWCNT functionalized with hydrophilic moieties were synthesized and then investigated regarding their physicochemical characteristics, dispersibility, biocompatibility, cellular uptake and mucoadhesive properties. Finally, their binding capacity for AS-ODN via hybridization to carrier strand oligodeoxynucleotides (CS-ODN), which were either non-covalently adsorbed or covalently bound to the different MWCNT types, was evaluated. Results: Pristine MWCNT were successfully functionalized with hydrophilic moieties (MWCNT-OH, -COOH, -NH2, -SH), which led to an improved dispersibility and an enhanced dispersion stability. A viability assay revealed that MWCNT-OH, MWCNT-NH2 and MWCNT-SH were most biocompatible. All MWCNT were internalized by BCa cells, whereupon the highest uptake was observed for MWCNT-OH with 40% of the cells showing an engulfment. Furthermore, all types of MWCNT could adhere to the urothelium of explanted mouse bladders, but the amount of the covered urothelial area was with 2-7% rather low. As indicated by fluorescence measurements, it was possible to attach CS-ODN by adsorption and covalent binding to functionalized MWCNT. Adsorption of CS-ODN to pristine MWCNT, MWCNT-COOH and MWCNT-NH2 as well as covalent coupling to MWCNT-NH2 and MWCNT-SH resulted in the best binding capacity and stability. Subsequently, therapeutic AS-ODN could be hybridized to and reversibly released from the CS-ODN coupled via both strategies to the functionalized MWCNT. The release of AS-ODN at experimental conditions (80 °C, buffer) was most effective from CS-ODN adsorbed to MWCNT-OH and MWCNT-NH2 as well as from CS-ODN covalently attached to MWCNT-COOH, MWCNT-NH2 and MWCNT-SH. Furthermore, we could exemplarily demonstrate that AS-ODN could be released following hybridization to CS-ODN adsorbed to MWCNT-OH at physiological settings (37 °C, urine). Conclusions: In conclusion, functionalized MWCNT might be used as nanotransporters in antisense therapy for the local treatment of BCa.
  • Item
    Functionalized carbon nanotubes as transporters for antisense oligodeoxynucleotides
    (Cambridge : Royal Society of Chemistry, 2014) Kaufmann, Anika; Kunhardt, David; Cirillo, Giuseppe; Hampel, Silke; Schwenzer, Bernd
    The use of DNA-based therapeutics requires efficient delivery systems to transport the DNA to their place of action within the cell. To accomplish this, we investigated multiwalled carbon nanotubes (pristine MWCNT, p-MWCNT) functionalized with hydroxyl groups via 1,3-dipolar cycloaddition. In this way, we have obtained MWCNT-f-OH with improved stability in aqueous dispersions which is an advantageous property for their use in cellular environments. Afterwards, a carrier strand oligodeoxynucleotide (CS-ODN) was adsorbed to MWCNT-f-OH followed by hybridization with a therapeutic antisense oligodeoxynucleotide (AS-ODN). The amount of adsorbed CS-ODN, as well as the complementary AS-ODN and a non-complementary oligodeoxynucleotide (NS-ODN) as reference, was directly measured by radionuclide labeling of ODNs. We show that subsequent release of AS-ODNs and NS-ODNs was possible for MWCNT-f-OH above the melting temperature of AS-ODNs at 80 °C and under physiological conditions at different pH values at 37 °C. We also show a very low influence of p-MWCNT and MWCNT-f-OH on the cell viability of the bladder carcinoma (BCa) cell line EJ28 and that both MWCNT types were internalized by EJ28. Therefore, MWCNT-f-OH represents a promising carrier able to transport and release AS-ODNs inside cells.
  • Item
    Nitrogen-Doped Carbon Nanotube/Polypropylene Composites with Negative Seebeck Coefficient
    (Basel : MDPI, 2020) Krause, Beate; Konidakis, Ioannis; Arjmand, Mohammad; Sundararaj, Uttandaraman; Fuge, Robert; Liebscher, Marco; Hampel, Silke; Klaus, Maxim; Serpetzoglou, Efthymis; Stratakis, Emmanuel; Pötschke, Petra
    This study describes the application of multi-walled carbon nanotubes that were nitrogen-doped during their synthesis (N-MWCNTs) in melt-mixed polypropylene (PP) composites. Different types of N-MWCNTs, synthesized using different methods, were used and compared. Four of the five MWCNT grades showed negative Seebeck coefficients (S), indicating n-type charge carrier behavior. All prepared composites (with a concentration between 2 and 7.5 wt% N-MWCNTs) also showed negative S values, which in most cases had a higher negative value than the corresponding nanotubes. The S values achieved were between 1.0 µV/K and −13.8 µV/K for the N-MWCNT buckypapers or powders and between −4.7 µV/K and −22.8 µV/K for the corresponding composites. With a higher content of N-MWCNTs, the increase in electrical conductivity led to increasing values of the power factor (PF) despite the unstable behavior of the Seebeck coefficient. The highest power factor was achieved with 4 wt% N-MWCNT, where a suitable combination of high electrical conductivity and acceptable Seebeck coefficient led to a PF value of 6.1 × 10−3 µW/(m·K2). First experiments have shown that transient absorption spectroscopy (TAS) is a useful tool to study the carrier transfer process in CNTs in composites and to correlate it with the Seebeck coefficient.
  • Item
    Photocatalytic Degradation of Some Phenolic Compounds Present in Olive Mill Wastewater
    (Ghaziabad : [Verlag nicht ermittelbar], 2018) Rimawi, Waleed H.; Salim, Hatim; Seder, Doaa; Ghunaim, Rasha; Hampel, Silke
    The olive oil industry in Palestine is an important and widely spread one and accomplished with the release of large amounts of olive-mills wastewater. This wastewater represents a significant environmental problem due to its high phenolic content. In this work, the photocatalytic degradation of the some phenolic compounds (gallic acid, oleuropein and resorcinol) present in olive-mills wastewater using the synthesized nanoparticles of mixed SnO2-MgO catalyst and solar irradiation was performed. The nanoparticles of mixed SnO2-MgO catalyst with different ratios were prepared by sol gel method using a modified procedure. The obtained particles were characterized by SEM and XRD. The particle size was determined as 4.32 ± 0.42 nm which is much smaller than those previously prepared by standard procedures. The degradation percentage of phenolic compounds was measured by UV spectrophotometry. The effect of time, catalyst amount and phenolic compound concentration on degradation efficiency was studied. The maximum degradation was achieved using SnO2-MgO (4:1) catalyst, 2.5 mg catalyst per 5 mL solution, within the time of 60-120 min and ranged from 51 to 90 % for different concentrations of phenolic compounds.
  • Item
    Chromium Trihalides CrX3 (X = Cl, Br, I): Direct Deposition of Micro- and Nanosheets on Substrates by Chemical Vapor Transport
    (Weinheim : Wiley-VCH, 2019) Grönke, Martin; Buschbeck, Benjamin; Schmidt, Peer; Valldor, Martin; Oswald, Steffen; Hao, Qi; Lubk, Axel; Wolf, Daniel; Steiner, Udo; Büchner, Bernd; Hampel, Silke
    The experimental observation of intrinsic ferromagnetism in single layered chromium trihalides CrX3 (X = Cl, Br, I) has gained outstanding attention recently due to their possible implementation in spintronic devices. However, the reproducible preparation of highly crystalline chromium(III) halide nanolayers without stacking faults is still an experimental challenge. As chromium trihalides consist of adjacent layers with weak interlayer coupling, the preparation of ultrathin CrX3 nanosheets directly on substrates via vapor transport proves as an advantageous synthesis technique. It is demonstrated that vapor growth of ultrathin highly crystalline CrX3 micro- and nanosheets succeeds directly on yttrium stabilized zirconia substrates in a one-step process via chemical vapor transport (CVT) in temperature gradients of 100 K (600 °C → 500 °C for CrCl3 and 650 °C → 550 °C for CrBr3 or CrI3) without a need for subsequent delamination. Due to simulation results, optimization of synthesis conditions is realized and phase pure CrX3 nanosheets with thicknesses ≤25 nm are obtained via short term CVT. The nanosheets morphology, crystallinity, and phase purity are analyzed by several techniques, including microscopy, diffraction, and spectroscopy. Furthermore, a potential subsequent delamination technique is demonstrated to give fast access to CrX3 monolayers using the example of CrCl3. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim