Search Results

Now showing 1 - 3 of 3
  • Item
    State-of-the-art global models underestimate impacts from climate extremes
    ([London] : Nature Publishing Group UK, 2019) Schewe, Jacob; Gosling, Simon N.; Reyer, Christopher; Zhao, Fang; Ciais, Philippe; Elliott, Joshua; Francois, Louis; Huber, Veronika; Lotze, Heike K.; Seneviratne, Sonia I.; van Vliet, Michelle T. H.; Vautard, Robert; Wada, Yoshihide; Breuer, Lutz; Büchner, Matthias; Carozza, David A.; Chang, Jinfeng; Coll, Marta; Deryng, Delphine; de Wit, Allard; Eddy, Tyler D.; Folberth, Christian; Frieler, Katja; Friend, Andrew D.; Gerten, Dieter; Gudmundsson, Lukas; Hanasaki, Naota; Ito, Akihiko; Khabarov, Nikolay; Kim, Hyungjun; Lawrence, Peter; Morfopoulos, Catherine; Müller, Christoph; Müller Schmied, Hannes; Orth, René; Ostberg, Sebastian; Pokhrel, Yadu; Pugh, Thomas A. M.; Sakurai, Gen; Satoh, Yusuke; Schmid, Erwin; Stacke, Tobias; Steenbeek, Jeroen; Steinkamp, Jörg; Tang, Qiuhong; Tian, Hanqin; Tittensor, Derek P.; Volkholz, Jan; Wang, Xuhui; Warszawski, Lila
    Global impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.
  • Item
    Magnitude and robustness associated with the climate change impacts on global hydrological variables for transient and stabilized climate states
    (Bristol : IOP Publ., 2018) Boulange, Julien; Hanasaki, Naota; Veldkamp, Ted; Schewe, Jacob; Shiogama, Hideo
    Recent studies have assessed the impacts of climate change at specific global temperature targets using relatively short (30 year ) transient time-slice periods which are characterized by a steady increase in global mean temperature with time. The Inter-Sectoral Impacts Model Intercomparison Project Phase 2b (ISIMIP2b) provides trend-preserving bias-corrected climate model datasets over six centuries for four global climate models (GCMs) which therefore can be used to evaluate the potential effects of using time-slice periods from stabilized climate state rather than time-slice periods from transient climate state on climate change impacts. Using the H08 global hydrological model, the impacts of climate change, quantified as the deviation from the pre-industrial era, and the signal-to-noise (SN) ratios were computed for five hydrological variables, namely evapotranspiration (EVA), precipitation (PCP), snow water equivalent (SNW), surface temperature (TAR), and total discharge (TOQ) over 20 regions comprising the global land area. A significant difference in EVA for the transient and stabilized climate states was systematically detected for all four GCMs. In addition, three out of the four GCMs indicated that significant differences in PCP, TAR, and TOQ for the transient and stabilized climate states could also be detected over a small fraction of the globe. For most regions, the impacts of climate change toward EVA, PCP, and TOQ are indicated to be underestimated using the transient climate state simulations. The transient climate state was also identified to underestimate the SN ratios compared to the stabilized climate state. For both the global and regional scales, however, there was no indication that surface areas associated with the different classes of SN ratios changed depending on the two climate states (t-test, p > 0.01). Transient time slices may be considered a good approximation of the stabilized climate state, for large-scale hydrological studies and many regions and variables, as: (1) impacts of climate change were only significantly different from those of the stabilized climate state for a small fraction of the globe, and (2) these differences were not indicated to alter the robustness of the impacts of climate change.
  • Item
    Global scenarios of irrigation water abstractions for bioenergy production: a systematic review
    (Munich : EGU, 2021) Stenzel, Fabian; Gerten, Dieter; Hanasaki, Naota
    Many scenarios of future climate evolution and its anthropogenic drivers include considerable amounts of bioenergy as a fuel source, as a negative emission technology, and for providing electricity. The associated freshwater abstractions for irrigation of dedicated biomass plantations might be substantial and therefore potentially increase water limitation and stress in affected regions; however, assumptions and quantities of water use provided in the literature vary strongly. This paper reviews existing global assessments of freshwater abstractions for bioenergy production and puts these estimates into the context of scenarios of other water-use sectors. We scanned the available literature and (out of 430 initial hits) found 16 publications (some of which include several bioenergy-water-use scenarios) with reported values on global irrigation water abstractions for biomass plantations, suggesting water withdrawals in the range of 128.4 to 9000 km3 yr−1, which would come on top of (or compete with) agricultural, industrial, and domestic water withdrawals. To provide an understanding of the origins of this large range, we present the diverse underlying assumptions, discuss major study differences, and calculate an inverse water-use efficiency (iwue), which facilitates comparison of the required freshwater amounts per produced biomass harvest. We conclude that due to the potentially high water demands and the tradeoffs that might go along with them, bioenergy should be an integral part of global assessments of freshwater demand and use. For interpreting and comparing reported estimates of possible future bioenergy water abstractions, full disclosure of parameters and assumptions is crucial. A minimum set should include the complete water balances of bioenergy production systems (including partitioning of blue and green water), bioenergy crop species and associated water-use efficiencies, rainfed and irrigated bioenergy plantation locations (including total area and meteorological conditions), and total biomass harvest amounts. In the future, a model intercomparison project with standardized parameters and scenarios would be helpful.