Search Results

Now showing 1 - 2 of 2
  • Item
    Scanning X-ray nanodiffraction from ferroelectric domains in strained K0.75Na0.25NbO3 epitaxial films grown on (110) TbScO3
    (Copenhagen : Munksgaard, 2017) Schmidbauer, Martin; Hanke, Michael; Kwasniewski, Albert; Braun, Dorothee; von Helden, Leonard; Feldt, Christoph; Leake, Steven John; Schwarzkopf, Jutta
    Scanning X-ray nanodiffraction on a highly periodic ferroelectric domain pattern of a strained K0.75Na0.25NbO3 epitaxial layer has been performed by using a focused X-ray beam of about 100 14;nm probe size. A 90°-rotated domain variant which is aligned along [1 2]TSO has been found in addition to the predominant domain variant where the domains are aligned along the [12]TSO direction of the underlying (110) TbScO3 (TSO) orthorhombic substrate. Owing to the larger elastic strain energy density, the 90°-rotated domains appear with significantly reduced probability. Furthermore, the 90°-rotated variant shows a larger vertical lattice spacing than the 0°-rotated domain variant. Calculations based on linear elasticity theory substantiate that this difference is caused by the elastic anisotropy of the K0.75Na0.25NbO3 epitaxial layer.
  • Item
    Scanning X-ray nanodiffraction: From the experimental approach towards spatially resolved scattering simulations
    (London : BioMed Central, 2012) Dubslaff, Martin; Hanke, Michael; Patommel, Jens; Hoppe, Robert; Schroer, Christian G.; Schöder, Sebastian; Burghammer, Manfred
    An enhancement on the method of X-ray diffraction simulations for applications using nanofocused hard X-ray beams is presented. We combine finite element method, kinematical scattering calculations, and a spot profile of the X-ray beam to simulate the diffraction of definite parts of semiconductor nanostructures. The spot profile could be acquired experimentally by X-ray ptychography. Simulation results are discussed and compared with corresponding X-ray nanodiffraction experiments on single SiGe dots and dot molecules.