Search Results

Now showing 1 - 2 of 2
  • Item
    Energy balances and greenhouse gas emissions of palm oil biodiesel in Indonesia
    (Milton Park : Taylor & Francis, 2011) Harsono, Soni Sisbudi; Prochnow, Annette; Grundmann, Philipp; Hansen, Anja; Hallmann, Claudia
    This study presents a cradle-to-gate assessment of the energy balances and greenhouse gas (GHG) emissions of Indonesian palm oil biodiesel production, including the stages of land-use change (LUC), agricultural phase, transportation, milling, biodiesel processing, and comparing the results from different farming systems, including company plantations and smallholder plantations (either out growers or independent growers) in different locations in Kalimantan and Sumatra of Indonesia. The findings demonstrate that there are considerable differences between the farming systems and the locations in net energy yields (43.6–49.2 GJ t 1 biodiesel yr 1) as well as GHG emissions (1969.6–5626.4 kg CO2eq t 1 biodiesel yr 1). The output to input ratios are positive in all cases. The largest GHG emissions result from LUC effects, followed by the transesterification, fertilizer production, agricultural production processes, milling, and transportation. Ecosystem carbon payback times range from 11 to 42 years.
  • Item
    Resource usage strategies and trade-offs between cropland demand, fossil fuel consumption, and greenhouse gas emissions - building insulation as an example
    (Basel : MDPI, 2016) Hansen, Anja; Budde, Jörn; Prochnow, Annette
    Bioresources are used in different production systems as materials as well as energy carriers. The same is true for fossil fuel resources. This study explored whether preferential resource usages exist, using a building insulation system as an example, with regard to the following sustainability criteria: climate impact, land, and fossil fuel demand. We considered the complete life cycle in a life cycle assessment-based approach. The criteria were compared for two strategies: one used natural fibers as material and generated production energies from fossil fuels; the other generated production energies from bioenergy carriers and transformed fossil resources into the insulation material. Both strategies finally yielded the same insulation effect. Hence, the energy demand for heating the building was ignored. None of the strategies operated best in all three criteria: While cropland demand was lower in the bioenergy than in the biomaterial system, its fossil fuel demand was higher. Net contribution to climate change was in the same range for both strategies if we considered no indirect changes in land use. Provided that effective recycling concepts for fossil-derived insulations are in place, using bioresources for energy generation was identified as a promising way to mitigate climate change along with efficient resource use.