Search Results

Now showing 1 - 2 of 2
  • Item
    The Role of Al2O3 ALD Coating on Sn-Based Intermetallic Anodes for Rate Capability and Long-Term Cycling in Lithium-Ion Batteries
    (Weinheim : Wiley-VCH, 2022) Soltani, Niloofar; Abbas, Syed Muhammad; Hantusch, Martin; Lehmann, Sebastian; Nielsch, Kornelius; Bahrami, Amin; Mikhailova, Daria
    The electrochemical performances of CoSn2 and Ni3Sn4 as potential anode materials in lithium-ion batteries (LIBs) are investigated using varying thicknesses of an alumina layer deposited by the atomic layer deposition (ALD) technique. Rate capability results showed that at high current densities, Al2O3-coated CoSn2 and Ni3Sn4 electrodes after 10-ALD cycles outperformed uncoated materials. The charge capacities of coated CoSn2 and Ni3Sn4 electrodes are 571 and 134 mAh g−1, respectively, at a high current density of 5 A g−1, while the capacities of uncoated electrodes are 363 and 11 mAh g−1. When the current density is reduced to 1 A g−1, however, the cycling performances of Al2O3-coated CoSn2 and Ni3Sn4 electrodes fade faster after almost 40 cycles than uncoated electrodes. The explanation is found in the composition of the solid-electrolyte interface (SEI), which strongly depends on the current rate. Thus, X-ray photoelectron spectroscopy analysis of SEI layers on coated samples cycles at a low current density of 0.1 Ag−1, revealed organic carbonates as major products, which probably have a low ionic conductivity. In contrast, the SEI of coated materials cycled at 5 Ag−1 consists mostly of mixed inorganic/organic fluorine-rich Al-F and C-F species facilitating a higher ionic transport, which improves electrochemical performance.
  • Item
    Water-Free SbOx ALD Process for Coating Bi2Te3 Particle
    (Basel : MDPI, 2023) Lehmann, Sebastian; Mitzscherling, Fanny; He, Shiyang; Yang, Jun; Hantusch, Martin; Nielsch, Kornelius; Bahrami, Amin
    We developed a water-free atomic layer deposition (ALD) process to homogeneously deposit SbOx using SbCl5 and Sb-Ethoxide as precursors, and report it here for the first time. The coating is applied on Bi2Te3 particles synthesized via the solvothermal route to enhance the thermoelectric properties (i.e., Seebeck coefficient, thermal and electrical conductivity) via interface engineering. The amorphous character of the coating was shown by the missing reflexes on the X-ray diffractograms (XRD). A shift from the oxidation state +III to +V of the Sb species was observed using X-ray photoelectron spectroscopy (XPS), indicating increased thickness of the SbOx coating layer. Additionally, a peak shift of the Sb 3d5/2 + O 1s peak indicated increased n-type doping of the material. Electrical measurements of spark plasma-sintered bulk samples confirmed the doping effect on the basis of decreased specific resistivity with increasing SbOx layer thickness. The Seebeck coefficient was improved for the coated sample with 500 cycles of SbOx, while the total thermal conductivity was reduced, resulting in enhancement of the zT. The results distinctly show that surface engineering via powder ALD is an effective tool for improving key properties of thermoelectric materials like electrical conductivity and the Seebeck coefficient.