Search Results

Now showing 1 - 3 of 3
  • Item
    Selective Out‐of‐Plane Optical Coupling between Vertical and Planar Microrings in a 3D Configuration
    (Hoboken, NJ : Wiley, 2020) Valligatla, Sreeramulu; Wang, Jiawei; Madani, Abbas; Naz, Ehsan Saei Ghareh; Hao, Qi; Saggau, Christian Niclaas; Yin, Yin; Ma, Libo; Schmidt, Oliver G.
    3D photonic integrated circuits are expected to play a key role in future optoelectronics with efficient signal transfer between photonic layers. Here, the optical coupling of tubular microcavities, supporting resonances in a vertical plane, with planar microrings, accommodating in‐plane resonances, is explored. In such a 3D coupled composite system with largely mismatched cavity sizes, periodic mode splitting and resonant mode shifts are observed due to mode‐selective interactions. The axial direction of the microtube cavity provides additional design freedom for selective mode coupling, which is achieved by carefully adjusting the axial displacement between the microtube and the microring. The spectral anticrossing behavior is caused by strong coupling in this composite optical system and is excellently reproduced by numerical modeling. Interfacing tubular microcavities with planar microrings is a promising approach toward interlayer light transfer with added optical functionality in 3D photonic systems.
  • Item
    Antifreezing Hydrogel with High Zinc Reversibility for Flexible and Durable Aqueous Batteries by Cooperative Hydrated Cations
    (Weinheim : Wiley-VCH, 2020) Zhu, Minshen; Wang, Xiaojie; Tang, Hongmei; Wang, Jiawei; Hao, Qi; Liu, Lixiang; Li, Yang; Zhang, Kai; Schmidt, Oliver G.
    Hydrogels are widely used in flexible aqueous batteries due to their liquid-like ion transportation abilities and solid-like mechanical properties. Their potential applications in flexible and wearable electronics introduce a fundamental challenge: how to lower the freezing point of hydrogels to preserve these merits without sacrificing hydrogels' basic advantages in low cost and high safety. Moreover, zinc as an ideal anode in aqueous batteries suffers from low reversibility because of the formation of insulative byproducts, which is mainly caused by hydrogen evolution via extensive hydration of zinc ions. This, in principle, requires the suppression of hydration, which induces an undesirable increase in the freezing point of hydrogels. Here, it is demonstrated that cooperatively hydrated cations, zinc and lithium ions in hydrogels, are very effective in addressing the above challenges. This simple but unique hydrogel not only enables a 98% capacity retention upon cooling down to −20 °C from room temperature but also allows a near 100% capacity retention with >99.5% Coulombic efficiency over 500 cycles at −20 °C. In addition, the strengthened mechanical properties of the hydrogel under subzero temperatures result in excellent durability under various harsh deformations after the freezing process. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Chromium Trihalides CrX3 (X = Cl, Br, I): Direct Deposition of Micro- and Nanosheets on Substrates by Chemical Vapor Transport
    (Weinheim : Wiley-VCH, 2019) Grönke, Martin; Buschbeck, Benjamin; Schmidt, Peer; Valldor, Martin; Oswald, Steffen; Hao, Qi; Lubk, Axel; Wolf, Daniel; Steiner, Udo; Büchner, Bernd; Hampel, Silke
    The experimental observation of intrinsic ferromagnetism in single layered chromium trihalides CrX3 (X = Cl, Br, I) has gained outstanding attention recently due to their possible implementation in spintronic devices. However, the reproducible preparation of highly crystalline chromium(III) halide nanolayers without stacking faults is still an experimental challenge. As chromium trihalides consist of adjacent layers with weak interlayer coupling, the preparation of ultrathin CrX3 nanosheets directly on substrates via vapor transport proves as an advantageous synthesis technique. It is demonstrated that vapor growth of ultrathin highly crystalline CrX3 micro- and nanosheets succeeds directly on yttrium stabilized zirconia substrates in a one-step process via chemical vapor transport (CVT) in temperature gradients of 100 K (600 °C → 500 °C for CrCl3 and 650 °C → 550 °C for CrBr3 or CrI3) without a need for subsequent delamination. Due to simulation results, optimization of synthesis conditions is realized and phase pure CrX3 nanosheets with thicknesses ≤25 nm are obtained via short term CVT. The nanosheets morphology, crystallinity, and phase purity are analyzed by several techniques, including microscopy, diffraction, and spectroscopy. Furthermore, a potential subsequent delamination technique is demonstrated to give fast access to CrX3 monolayers using the example of CrCl3. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim