Search Results

Now showing 1 - 6 of 6
  • Item
    How Much Physical Guidance is Needed to Orient Growing Axons in 3D Hydrogels?
    (Weinheim : Wiley-VCH, 2020) Rose, Jonas C.; Gehlen, David B.; Omidinia-Anarkoli, Abdolrahman; Fölster, Maaike; Haraszti, Tamás; Jaekel, Esther E.; De Laporte, Laura
    Directing cells is essential to organize multi-cellular organisms that are built up from subunits executing specific tasks. This guidance requires a precisely controlled symphony of biochemical, mechanical, and structural signals. While many guiding mechanisms focus on 2D structural patterns or 3D biochemical gradients, injectable material platforms that elucidate how cellular processes are triggered by defined 3D physical guiding cues are still lacking but crucial for the repair of soft tissues. Herein, a recently developed anisotropic injectable hybrid hydrogel (Anisogel) contains rod-shaped microgels that orient in situ by a magnetic field and has propelled studying 3D cell guidance. Here, the Anisogel is used to investigate the dependence of axonal guidance on microgel dimensions, aspect ratio, and distance. While large microgels result in high material anisotropy, they significantly reduce neurite outgrowth and thus the guidance efficiency. Narrow and long microgels enable strong axonal guidance with maximal outgrowth including cell sensing over distances of tens of micrometers in 3D. Moreover, nerve cells decide to orient inside the Anisogel within the first three days, followed by strengthening of the alignment, which goes along with oriented fibronectin deposition. These findings demonstrate the potential of the Anisogel to tune structural and mechanical parameters for specific applications. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Zwitterionic Dendrimersomes: A Closer Xenobiotic Mimic of Cell Membranes
    (Weinheim : Wiley-VCH, 2022-10-31) Joseph, Anton; Wagner, Anna M.; Garay-Sarmiento, Manuela; Aleksanyan, Mina; Haraszti, Tamás; Söder, Dominik; Georgiev, Vasil N.; Dimova, Rumiana; Percec, Virgil; Rodriguez-Emmenegger, Cesar
    Building functional mimics of cell membranes is an important task toward the development of synthetic cells. So far, lipid and amphiphilic block copolymers are the most widely used amphiphiles with the bilayers by the former lacking stability while membranes by the latter are typically characterized by very slow dynamics. Herein, a new type of Janus dendrimer containing a zwitterionic phosphocholine hydrophilic headgroup (JDPC) and a 3,5-substituted dihydrobenzoate-based hydrophobic dendron is introduced. JDPC self-assembles in water into zwitterionic dendrimersomes (z-DSs) that faithfully recapitulate the cell membrane in thickness, flexibility, and fluidity, while being resilient to harsh conditions and displaying faster pore closing dynamics in the event of membrane rupture. This enables the fabrication of hybrid DSs with components of natural membranes, including pore-forming peptides, structure-directing lipids, and glycans to create raft-like domains or onion vesicles. Moreover, z-DSs can be used to create active synthetic cells with life-like features that mimic vesicle fusion and motility as well as environmental sensing. Despite their fully synthetic nature, z-DSs are minimal cell mimics that can integrate and interact with living matter with the programmability to imitate life-like features and beyond.
  • Item
    Enhanced Concanavalin A Binding to Preorganized Mannose Nanoarrays in Glycodendrimersomes Revealed Multivalent Interactions
    (Weinheim : Wiley-VCH, 2021) Kostina, Nina Yu; Söder, Dominik; Haraszti, Tamás; Xiao, Qi; Rahimi, Khosrow; Partridge, Benjamin E.; Klein, Michael L.; Percec, Virgil; Rodriguez‐Emmenegger, Cesar
    The effect of the two-dimensional glycan display on glycan-lectin recognition remains poorly understood despite the importance of these interactions in a plethora of cellular processes, in (patho)physiology, as well as its potential for advanced therapeutics. Faced with this challenge we utilized glycodendrimersomes, a type of synthetic vesicles whose membrane mimics the surface of a cell and offers a means to probe the carbohydrate biological activity. These single-component vesicles were formed by the self-assembly of sequence-defined mannose-Janus dendrimers, which serve as surrogates for glycolipids. Using atomic force microscopy and molecular modeling we demonstrated that even mannose, a monosaccharide, was capable of organizing the sugar moieties into periodic nanoarrays without the need of the formation of liquid-ordered phases as assumed necessary for rafts. Kinetics studies of Concanavalin A binding revealed that those nanoarrays resulted in a new effective ligand yielding a ten-fold increase in the kinetic and thermodynamic constant of association. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    Granular Cellulose Nanofibril Hydrogel Scaffolds for 3D Cell Cultivation
    (Weinheim : Wiley-VCH, 2020) Gehlen, David B.; Jürgens, Niklas; Omidinia-Anarkoli, Abdolrahman; Haraszti, Tamás; George, Julian; Walther, Andreas; Ye, Hua; De Laporte, Laura
    The replacement of diseased and damaged organs remains an challenge in modern medicine. However, through the use of tissue engineering techniques, it may soon be possible to (re)generate tissues and organs using artificial scaffolds. For example, hydrogel networks made from hydrophilic precursor solutions can replicate many properties found in the natural extracellular matrix (ECM) but often lack the dynamic nature of the ECM, as many covalently crosslinked hydrogels possess elastic and static networks with nanoscale pores hindering cell migration without being degradable. To overcome this, macroporous colloidal hydrogels can be prepared to facilitate cell infiltration. Here, an easy method is presented to fabricate granular cellulose nanofibril hydrogel (CNF) scaffolds as porous networks for 3D cell cultivation. CNF is an abundant natural and highly biocompatible material that supports cell adhesion. Granular CNF scaffolds are generated by pre-crosslinking CNF using calcium and subsequently pressing the gel through micrometer-sized nylon meshes. The granular solution is mixed with fibroblasts and crosslinked with cell culture medium. The obtained granular CNF scaffold is significantly softer and enables well-distributed fibroblast growth. This cost-effective material combined with this efficient and facile fabrication technique allows for 3D cell cultivation in an upscalable manner. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Compartmentalized Jet Polymerization as a High-Resolution Process to Continuously Produce Anisometric Microgel Rods with Adjustable Size and Stiffness
    (Weinheim : Wiley-VCH, 2019) Krüger, Andreas J.D.; Bakirman, Onur; Guerzoni, Luis P.B.; Jans, Alexander; Gehlen, David B.; Rommel, Dirk; Haraszti, Tamás; Kuehne, Alexander J.C.; De Laporte, Laura
    In the past decade, anisometric rod-shaped microgels have attracted growing interest in the materials-design and tissue-engineering communities. Rod-shaped microgels exhibit outstanding potential as versatile building blocks for 3D hydrogels, where they introduce macroscopic anisometry, porosity, or functionality for structural guidance in biomaterials. Various fabrication methods have been established to produce such shape-controlled elements. However, continuous high-throughput production of rod-shaped microgels with simultaneous control over stiffness, size, and aspect ratio still presents a major challenge. A novel microfluidic setup is presented for the continuous production of rod-shaped microgels from microfluidic plug flow and jets. This system overcomes the current limitations of established production methods for rod-shaped microgels. Here, an on-chip gelation setup enables fabrication of soft microgel rods with high aspect ratios, tunable stiffness, and diameters significantly smaller than the channel diameter. This is realized by exposing jets of a microgel precursor to a high intensity light source, operated at specific pulse sequences and frequencies to induce ultra-fast photopolymerization, while a change in flow rates or pulse duration enables variation of the aspect ratio. The microgels can assemble into 3D structures and function as support for cell culture and tissue engineering. © 2019 DWI – Leibniz Institute for Interactive Materials. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Synthetic 3D PEG-Anisogel Tailored with Fibronectin Fragments Induce Aligned Nerve Extension
    (Columbus, Ohio : American Chemical Society, 2019) Licht, Christopher; Rose, Jonas C.; Anarkoli, Abdolrahman Omidinia; Blondel, Delphine; Roccio, Marta; Haraszti, Tamás; Gehlen, David B.; Hubbell, Jeffrey A.; Lutolf, Matthias P.; De Laporte, Laura
    An enzymatically cross-linked polyethylene glycol (PEG)-based hydrogel was engineered to promote and align nerve cells in a three-dimensional manner. To render the injectable, otherwise bioinert, PEG-based material supportive for cell growth, its mechanical and biochemical properties were optimized. A recombinant fibronectin fragment (FNIII9*-10/12-14) was coupled to the PEG backbone during gelation to provide cell adhesive and growth factor binding domains in close vicinity. Compared to full-length fibronectin, FNIII9*-10/12-14 supports nerve growth at similar concentrations. In a 3D environment, only the ultrasoft 1 w/v% PEG hydrogels with a storage modulus of ∼10 Pa promoted neuronal growth. This gel was used to establish the first fully synthetic, injectable Anisogel by the addition of magnetically aligned microelements, such as rod-shaped microgels or short fibers. The Anisogel led to linear neurite extension and represents a large step in the direction of clinical translation with the opportunity to treat acute spinal cord injuries.