Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Ultrafine particles in cities

2014, Kumar, Prashant, Morawska, Lidia, Birmili, Wolfram, Paasonen, Pauli, Hu, Min, Kulmala, Markku, Harrison, Roy M., Norford, Leslie, Britter, Rex

Ultrafine particles (UFPs; diameter less than 100 nm) are ubiquitous in urban air, and an acknowledged risk to human health. Globally, the major source for urban outdoor UFP concentrations is motor traffic. Ongoing trends towards urbanisation and expansion of road traffic are anticipated to further increase population exposure to UFPs. Numerous experimental studies have characterised UFPs in individual cities, but an integrated evaluation of emissions and population exposure is still lacking. Our analysis suggests that the average exposure to outdoor UFPs in Asian cities is about four-times larger than that in European cities but impacts on human health are largely unknown. This article reviews some fundamental drivers of UFP emissions and dispersion, and highlights unresolved challenges, as well as recommendations to ensure sustainable urban development whilst minimising any possible adverse health impacts.

Loading...
Thumbnail Image
Item

Novel insights on new particle formation derived from a pan-european observing system

2018, Dall’Osto, M., Beddows, D.C.S., Asmi, A., Poulain, L., Hao, L., Freney, E., Allan, J.D., Canagaratna, M., Crippa, M., Bianchi, F., de Leeuw, G., Eriksson, A., Swietlicki, E., Hansson, H.C., Henzing, J.S., Granier, C., Zemankova, K., Laj, P., Onasch, T., Prevot, A., Putaud, J. P., Sellegri, K., Vidal, M., Virtanen, A., Simo, R., Worsnop, D., O’Dowd, C., Kulmala, M., Harrison, Roy M.

The formation of new atmospheric particles involves an initial step forming stable clusters less than a nanometre in size (<~1 nm), followed by growth into quasi-stable aerosol particles a few nanometres (~1-10 nm) and larger (>~10 nm). Although at times, the same species can be responsible for both processes, it is thought that more generally each step comprises differing chemical contributors. Here, we present a novel analysis of measurements from a unique multi-station ground-based observing system which reveals new insights into continental-scale patterns associated with new particle formation. Statistical cluster analysis of this unique 2-year multi-station dataset comprising size distribution and chemical composition reveals that across Europe, there are different major seasonal trends depending on geographical location, concomitant with diversity in nucleating species while it seems that the growth phase is dominated by organic aerosol formation. The diversity and seasonality of these events requires an advanced observing system to elucidate the key processes and species driving particle formation, along with detecting continental scale changes in aerosol formation into the future.