Search Results

Now showing 1 - 2 of 2
  • Item
    Lidar Observations of Stratospheric Gravity Waves From 2011 to 2015 at McMurdo (77.84°S, 166.69°E), Antarctica: 2. Potential Energy Densities, Lognormal Distributions, and Seasonal Variations
    (Hoboken, NJ : Wiley, 2018-8-6) Chu, Xinzhao; Zhao, Jian; Lu, Xian; Harvey, V. Lynn; Jones, R. Michael; Becker, Erich; Chen, Cao; Fong, Weichun; Yu, Zhibin; Roberts, Brendan R.; Dörnbrack, Andreas
    Five years of Fe Boltzmann lidar's Rayleigh temperature data from 2011 to 2015 at McMurdo are used to characterize gravity wave potential energy mass density (Epm), potential energy volume density (Epv), vertical wave number spectra, and static stability N² in the stratosphere 30–50 km. Epm (Epv) profiles increase (decrease) with altitude, and the scale heights of Epv indicate stronger wave dissipation in winter than in summer. Altitude mean (Formula presented.) and (Formula presented.) obey lognormal distributions and possess narrowly clustered small values in summer but widely spread large values in winter. (Formula presented.) and (Formula presented.) vary significantly from observation to observation but exhibit repeated seasonal patterns with summer minima and winter maxima. The winter maxima in 2012 and 2015 are higher than in other years, indicating interannual variations. Altitude mean (Formula presented.) varies by ~30–40% from the midwinter maxima to minima around October and exhibits a nearly bimodal distribution. Monthly mean vertical wave number power spectral density for vertical wavelengths of 5–20 km increases from summer to winter. Using Modern Era Retrospective Analysis for Research and Applications version 2 data, we find that large values of (Formula presented.) during wintertime occur when McMurdo is well inside the polar vortex. Monthly mean (Formula presented.) are anticorrelated with wind rotation angles but positively correlated with wind speeds at 3 and 30 km. Corresponding correlation coefficients are −0.62, +0.87, and +0.80, respectively. Results indicate that the summer-winter asymmetry of (Formula presented.) is mainly caused by critical level filtering that dissipates most gravity waves in summer. (Formula presented.) variations in winter are mainly due to variations of gravity wave generation in the troposphere and stratosphere and Doppler shifting by the mean stratospheric winds.
  • Item
    Observations of Reduced Turbulence and Wave Activity in the Arctic Middle Atmosphere Following the January 2015 Sudden Stratospheric Warming
    (Hoboken, NJ : Wiley, 2018-12-11) Triplett, Colin C.; Li, Jintai; Collins, Richard L.; Lehmacher, Gerald A.; Barjatya, Aroh; Fritts, David C.; Strelnikov, Boris; Lübken, Franz‐Josef; Thurairajah, Brentha; Harvey, V. Lynn; Hampton, Donald L.; Varney, Roger H.
    Measurements of turbulence and waves were made as part of the Mesosphere-Lower Thermosphere Turbulence Experiment (MTeX) on the night of 25–26 January 2015 at Poker Flat Research Range, Chatanika, Alaska (65°N, 147°W). Rocket-borne ionization gauge measurements revealed turbulence in the 70- to 88-km altitude region with energy dissipation rates between 0.1 and 24 mW/kg with an average value of 2.6 mW/kg. The eddy diffusion coefficient varied between 0.3 and 134 m2/s with an average value of 10 m2/s. Turbulence was detected around mesospheric inversion layers (MILs) in both the topside and bottomside of the MILs. These low levels of turbulence were measured after a minor sudden stratospheric warming when the circulation continued to be disturbed by planetary waves and winds remained weak in the stratosphere and mesosphere. Ground-based lidar measurements characterized the ensemble of inertia-gravity waves and monochromatic gravity waves. The ensemble of inertia-gravity waves had a specific potential energy of 0.8 J/kg over the 40- to 50-km altitude region, one of the lowest values recorded at Chatanika. The turbulence measurements coincided with the overturning of a 2.5-hr monochromatic gravity wave in a depth of 3 km at 85 km. The energy dissipation rates were estimated to be 3 mW/kg for the ensemble of waves and 18 mW/kg for the monochromatic wave. The MTeX observations reveal low levels of turbulence associated with low levels of gravity wave activity. In the light of other Arctic observations and model studies, these observations suggest that there may be reduced turbulence during disturbed winters.