Search Results

Now showing 1 - 4 of 4
  • Item
    Redox Stimulation of Human THP-1 Monocytes in Response to Cold Physical Plasma
    (Austin, Tex. : Landes Bioscience, 2015) Bekeschus, Sander; Schmidt, Anke; Bethge, Lydia; Masur, Kai; von Woedtke, Thomas; Hasse, Sybille; Wende, Kristian
    In plasma medicine, cold physical plasma delivers a delicate mixture of reactive components to cells and tissues. Recent studies suggested a beneficial role of cold plasma in wound healing. Yet, the biological processes related to the redox modulation via plasma are not fully understood. We here used the monocytic cell line THP-1 as a model to test their response to cold plasma in vitro. Intriguingly, short term plasma treatment stimulated cell growth. Longer exposure only modestly compromised cell viability but apparently supported the growth of cells that were enlarged in size and that showed enhanced metabolic activity. A significantly increased mitochondrial content in plasma treated cells supported this notion. On THP-1 cell proteome level, we identified an increase of protein translation with key regulatory proteins being involved in redox regulation (hypoxia inducible factor 2α), differentiation (retinoic acid signaling and interferon inducible factors), and cell growth (Yin Yang 1). Regulation of inflammation is a key element in many chronic diseases, and we found a significantly increased expression of the anti-inflammatory heme oxygenase 1 (HMOX1) and of the neutrophil attractant chemokine interleukin-8 (IL-8). Together, these results foster the view that cold physical plasma modulates the redox balance and inflammatory processes in wound related cells.
  • Item
    Cold Physical Plasma Modulates p53 and Mitogen-Activated Protein Kinase Signaling in Keratinocytes
    (London: Hindawi, 2019) Schmidt, Anke; Bekeschus, Sander; Jarick, Katja; Hasse, Sybille; von Woedtke, Thomas; Wende, Kristian
    Small reactive oxygen and nitrogen species (ROS/RNS) driven signaling plays a significant role in wound healing processes by controlling cell functionality and wound phase transitions. The application of cold atmospheric pressure plasma (CAP), a partially ionized gas expelling a variety of ROS and RNS, was shown to be effective in chronic wound management and contrastingly also in malignant diseases. The underlying molecular mechanisms are not well understood but redox signaling events are involved. As a central player, the cellular tumor antigen p53 governs regulatory networks controlling proliferation, death, or metabolism, all of which are grossly modulated by anti- and prooxidant signals. Using a human skin cell model, a transient phosphorylation and nuclear translocation of p53, preceded by the phosphorylation of upstream serine- (ATM) and serine/threonine-protein kinase (ATR), was detected after CAP treatment. Results indicate that ATM acts as a direct redox sensor without relevant contribution of phosphorylation of the histone A2X, a marker of DNA damage. Downstream events are the activation of checkpoint kinases Chk1/2 and several mitogen-activated (MAP) kinases. Subsequently, the expression of MAP kinase signaling effectors (e.g., heat shock protein Hsp27), epithelium derived growth factors, and cytokines (Interleukins 6 + 8) was increased. A number of p53 downstream effectors pointed at a decrease of cell growth due to DNA repair processes. In summary, CAP treatment led to an activation of cell repair and defense mechanisms including a modulation of paracrine inflammatory signals emphasizing the role of prooxidant species in CAP-related cell signaling. © 2019 Anke Schmidt et al.
  • Item
    Cold argon plasma as adjuvant tumour therapy on progressive head and neck cancer: A preclinical study
    (Basel : MDPI, 2019) Hasse, Sybille; Seebauer, Christian; Wende, Kristian; Schmidt, Anke; Metelmann, Hans-Robert; Woedtke, Thomas von; Bekeschus, Sander
    Investigating cold argon plasma (CAP) for medical applications is a rapidly growing, innovative field of research. The controllable supply of reactive oxygen and nitrogen species through CAP has the potential for utilization in tumour treatment. Maxillofacial surgery is limited if tumours grow on vital structures such as the arteria carotis. Here CAP could be considered as an option for adjuvant intraoperative tumour therapy especially in the case of squamous cell carcinoma of the head and neck. Further preclinical research is necessary to investigate the efficacy of this technology for future clinical applications in cancer treatment. Initially, a variety of in vitro assays was performed on two cell lines that served as surrogate for the squamous cell carcinoma (SCC) and healthy tissue, respectively. Cell viability, motility and the activation of apoptosis in SCC cells (HNO97) was compared with those in normal HaCaT keratinocytes. In addition, induction of apoptosis in ex vivo CAP treated human tissue biopsies of patients with tumours of the head and neck was monitored and compared to healthy control tissue of the same patient. In response to CAP treatment, normal HaCaT keratinocytes differed significantly from their malignant counterpart HNO97 cells in cell motility only whereas cell viability remained similar. Moreover, CAP treatment of tumour tissue induced more apoptotic cells than in healthy tissue that was accompanied by elevated extracellular cytochrome c levels. This study promotes a future role of CAP as an adjuvant intraoperative tumour therapy option in the treatment of head and neck cancer. Moreover, patient-derived tissue explants complement in vitro examinations in a meaningful way to reflect an antitumoral role of CAP. © 2019 by the authors.
  • Item
    Nrf2 signaling and inflammation are key events in physical plasma-spurred wound healing
    (Wyoming, NSW : Ivyspring, 2019) Schmidt, Anke; Woedtke, Thomas, von; Vollmar, Brigitte; Hasse, Sybille; Bekeschus, Sander
    Wound healing is strongly associated with the presence of a balanced content of reactive species in which oxygen-dependent, redox-sensitive signaling represents an essential step in the healing cascade. Numerous studies have demonstrated that cold physical plasma supports wound healing due to its ability to deliver a beneficial mixture of reactive species directly to the cells. Methods: We described a preclinical proof-of-principle-concept of cold plasma use in a dermal, full-thickness wound model in immunocompetent SKH1 mice. Quantitative PCR, Western blot analysis, immunohistochemistry and immunofluorescence were perfomed to evaluate the expression and cellular translocation of essential targets of Nrf2 and p53 signaling as well as immunomodulatory and angiogenetic factors. Apoptosis and proliferation were detected using TUNEL assay and Ki67 staining, respectively. Cytokine levels in serum were measured using bead-based multiplex cytokine analysis. Epidermal keratinocytes and dermal fibroblasts were isolated from mouse skin to perform functional knockdown experiments. Intravital fluorescence analysis was used to illustrate and quantified microvascular features. Results: Plasma exerted significant effects on wound healing in mice, including the promotion of granulation and reepithelialization as a consequence of the migration of skin cells, the balance of antioxidant and inflammatory response, and the early induction of macrophage and neutrophil recruitment to the wound sites. Moreover, through an early and local plasma-induced p53 inhibition with a concomitant stimulation of proliferation, the upregulation of angiogenetic factors, and an increased outgrowth of new vessels, our findings explain why dermal skin repair is accelerated. The cellular redox homeostasis was maintained and cells were defended from damage by a strong modulation of the nuclear E2-related factor (Nrf2) pathway and redox-sensitive p53 signaling. Conclusions: Although acute wound healing is non-problematic, the pathways highlighted that mainly the activation of Nrf2 signaling is a promising strategy for the clinical use of cold plasma in chronic wound healing.