Search Results

Now showing 1 - 3 of 3
  • Item
    Phonon driven charge dynamics in polycrystalline acetylsalicylic acid mapped by ultrafast x-ray diffraction
    (Melville, NY : AIP Publishing LLC, 2019) Hauf, Christoph; Hernandez Salvador, Antonio-Andres; Holtz, Marcel; Woerner, Michael; Elsaesser, Thomas
    The coupled lattice and charge dynamics induced by phonon excitation in polycrystalline acetylsalicylic acid (aspirin) are mapped by femtosecond x-ray powder diffraction. The hybrid-mode character of the 0.9 ± 0.1 THz methyl rotation in the aspirin molecules is evident from collective charge relocations over distances of some 100 pm, much larger than the sub-picometer nuclear displacements. Oscillatory charge relocations around the methyl group generate a torque on the latter, thus coupling electronic and nuclear motions.
  • Item
    Soft-mode driven polarity reversal in ferroelectrics mapped by ultrafast x-ray diffraction
    (Melville, NY : AIP Publishing LLC, 2018) Hauf, Christoph; Hernandez Salvador, Antonio-Andres; Holtz, Marcel; Woerner, Michael; Elsaesser, Thomas
    Quantum theory has linked microscopic currents and macroscopic polarizations of ferroelectrics, but the interplay of lattice excitations and charge dynamics on atomic length and time scales is an open problem. Upon phonon excitation in the prototypical ferroelectric ammonium sulfate [(NH4)2SO4], we determine transient charge density maps by femtosecond x-ray diffraction. A newly discovered low frequency-mode with a 3 ps period and sub-picometer amplitudes induces periodic charge relocations over some 100 pm, a hallmark of soft-mode behavior. The transient charge density allows for deriving the macroscopic polarization, showing a periodic reversal of polarity.
  • Item
    Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources
    (Melville, NY : AIP Publishing LLC, 2017) Holtz, Marcel; Hauf, Christoph; Weisshaupt, Jannick; Salvador, Antonio-Andres Hernandez; Woerner, Michael; Elsaesser, Thomas
    Table-top laser-driven hard x-ray sources with kilohertz repetition rates are an attractive alternative to large-scale accelerator-based systems and have found widespread applications in x-ray studies of ultrafast structural dynamics. Hard x-ray pulses of 100 fs duration have been generated at the Cu Kα wavelength with a photon flux of up to 109 photons per pulse into the full solid angle, perfectly synchronized to the sub- 100-fs optical pulses from the driving laser system. Based on spontaneous x-ray emission, such sources display a particular noise behavior which impacts the sensitivity of x-ray diffraction experiments. We present a detailed analysis of the photon statistics and temporal fluctuations of the x-ray flux, together with experimental strategies to optimize the sensitivity of optical pump/x-ray probe experiments. We demonstrate measurements close to the shot-noise limit of the x-ray source.