Search Results

Now showing 1 - 3 of 3
  • Item
    Fire, late frost, nun moth and drought risks in Germany's forests under climate change
    (Stuttgart : E. Schweizerbart Science Publishers, 2016) Lasch-Born, Petra; Suckow, Felicitas; Gutsch, Martin; Hauf, Ylva; Hoffmann, Peter; Kollas, Chris; Reyer, Christopher P.O.
    Ongoing climate change affects growth and increases biotic and abiotic threats to Germany's forests. We analysed how these risks develop through the mid-century under a variety of climate change scenarios using the process-based forest model 4C. This model allows the calculation of indicators for fire danger, late frost risk for beech and oak, drought stress and nun moth risk. 4C was driven by a set of 4 simulations of future climate generated with the statistical model STARS and with 10 simulations of future climate based on EURO-CORDEX model simulations for the RCP2.6, RCP4.5 and RCP8.5 pathways. A set of about 70000 forest stands (Norway spruce, Scots pine, beech, oak, birch), based on the national forest inventory describing 98.4 % of the forest in Germany, was used together with data from a digital soil map. The changes and the range of changes were analysed by comparing results of a recent time period (1971–2005) and a scenario time period (2011–2045). All indicators showed higher risks for the scenario time period compared to the recent time period, except the late frost risk indicators, if averaged over all climate scenarios. The late frost risk for beech and oaks decreased for the main forest sites. Under recent climate conditions, the highest risk with regard to all five indicators was found to be in the Southwest Uplands and the northern part of Germany. The highest climate-induced uncertainty regarding the indicators for 2011–2045 is projected for the East Central Uplands and Northeast German Plain.
  • Item
    The PROFOUND Database for evaluating vegetation models and simulating climate impacts on European forests
    (Katlenburg-Lindau : Copernics Publications, 2020) Reyer, Christopher P.O.; Silveyra Gonzalez, Ramiro; Dolos, Klara; Hartig, Florian; Hauf, Ylva; Noack, Matthias; Lasch-Born, Petra; Rötzer, Thomas; Pretzsch, Hans; Meesenburg, Henning; Fleck, Stefan; Wagner, Markus; Bolte, Andreas; Sanders, Tanja G.M.; Kolari, Pasi; Mäkelä, Annikki; Vesala, Timo; Mammarella, Ivan; Pumpanen, Jukka; Collalti, Alessio; Trotta, Carlo; Matteucci, Giorgio; D'Andrea, Ettore; Foltýnová, Lenka; Krejza, Jan; Ibrom, Andreas; Pilegaard, Kim; Loustau, Denis; Bonnefond, Jean-Marc; Berbigier, Paul; Picart, Delphine; Lafont, Sébastien; Dietze, Michael; Cameron, David; Vieno, Massimo; Tian, Hanqin; Palacios-Orueta, Alicia; Cicuendez, Victor; Recuero, Laura; Wiese, Klaus; Büchner, Matthias; Lange, Stefan; Volkholz, Jan; Kim, Hyungjun; Horemans, Joanna A.; Bohn, Friedrich; Steinkamp, Jörg; Chikalanov, Alexander; Weedon, Graham P.; Sheffield, Justin; Babst, Flurin; Vega del Valle, Iliusi; Suckow, Felicitas; Martel, Simon; Mahnken, Mats; Gutsch, Martin; Frieler, Katja
    Process-based vegetation models are widely used to predict local and global ecosystem dynamics and climate change impacts. Due to their complexity, they require careful parameterization and evaluation to ensure that projections are accurate and reliable. The PROFOUND Database (PROFOUND DB) provides a wide range of empirical data on European forests to calibrate and evaluate vegetation models that simulate climate impacts at the forest stand scale. A particular advantage of this database is its wide coverage of multiple data sources at different hierarchical and temporal scales, together with environmental driving data as well as the latest climate scenarios. Specifically, the PROFOUND DB provides general site descriptions, soil, climate, CO2, nitrogen deposition, tree and forest stand level, and remote sensing data for nine contrasting forest stands distributed across Europe. Moreover, for a subset of five sites, time series of carbon fluxes, atmospheric heat conduction and soil water are also available. The climate and nitrogen deposition data contain several datasets for the historic period and a wide range of future climate change scenarios following the Representative Concentration Pathways (RCP2.6, RCP4.5, RCP6.0, RCP8.5). We also provide pre-industrial climate simulations that allow for model runs aimed at disentangling the contribution of climate change to observed forest productivity changes. The PROFOUND DB is available freely as a “SQLite” relational database or “ASCII” flat file version (at https://doi.org/10.5880/PIK.2020.006/; Reyer et al., 2020). The data policies of the individual contributing datasets are provided in the metadata of each data file. The PROFOUND DB can also be accessed via the ProfoundData R package (https://CRAN.R-project.org/package=ProfoundData; Silveyra Gonzalez et al., 2020), which provides basic functions to explore, plot and extract the data for model set-up, calibration and evaluation.
  • Item
    Significant increase in natural disturbance impacts on European forests since 1950
    (Oxford [u.a.] : Blackwell Science, 2022) Patacca, Marco; Lindner, Marcus; Lucas‐Borja, Manuel Esteban; Cordonnier, Thomas; Fidej, Gal; Gardiner, Barry; Hauf, Ylva; Jasinevičius, Gediminas; Labonne, Sophie; Linkevičius, Edgaras; Mahnken, Mats; Milanovic, Slobodan; Nabuurs, Gert‐Jan; Nagel, Thomas A.; Nikinmaa, Laura; Panyatov, Momchil; Bercak, Roman; Seidl, Rupert; Ostrogović Sever, Masa Zorana; Socha, Jaroslaw; Thom, Dominik; Vuletic, Dijana; Zudin, Sergey; Schelhaas, Mart‐Jan
    Over the last decades, the natural disturbance is increasingly putting pressure on European forests. Shifts in disturbance regimes may compromise forest functioning and the continuous provisioning of ecosystem services to society, including their climate change mitigation potential. Although forests are central to many European policies, we lack the long-term empirical data needed for thoroughly understanding disturbance dynamics, modeling them, and developing adaptive management strategies. Here, we present a unique database of >170,000 records of ground-based natural disturbance observations in European forests from 1950 to 2019. Reported data confirm a significant increase in forest disturbance in 34 European countries, causing on an average of 43.8 million m3 of disturbed timber volume per year over the 70-year study period. This value is likely a conservative estimate due to under-reporting, especially of small-scale disturbances. We used machine learning techniques for assessing the magnitude of unreported disturbances, which are estimated to be between 8.6 and 18.3 million m3/year. In the last 20 years, disturbances on average accounted for 16% of the mean annual harvest in Europe. Wind was the most important disturbance agent over the study period (46% of total damage), followed by fire (24%) and bark beetles (17%). Bark beetle disturbance doubled its share of the total damage in the last 20 years. Forest disturbances can profoundly impact ecosystem services (e.g., climate change mitigation), affect regional forest resource provisioning and consequently disrupt long-term management planning objectives and timber markets. We conclude that adaptation to changing disturbance regimes must be placed at the core of the European forest management and policy debate. Furthermore, a coherent and homogeneous monitoring system of natural disturbances is urgently needed in Europe, to better observe and respond to the ongoing changes in forest disturbance regimes.