Search Results

Now showing 1 - 8 of 8
Loading...
Thumbnail Image
Item

Amorphous-Like Ultralow Thermal Transport in Crystalline Argyrodite Cu7PS6

2024, Shen, Xingchen, Ouyang, Niuchang, Huang, Yuling, Tung, Yung‐Hsiang, Yang, Chun‐Chuen, Faizan, Muhammad, Perez, Nicolas, He, Ran, Sotnikov, Andrei, Willa, Kristin, Wang, Chen, Chen, Yue, Guilmeau, Emmanuel

Due to their amorphous-like ultralow lattice thermal conductivity both below and above the superionic phase transition, crystalline Cu- and Ag-based superionic argyrodites have garnered widespread attention as promising thermoelectric materials. However, despite their intriguing properties, quantifying their lattice thermal conductivities and a comprehensive understanding of the microscopic dynamics that drive these extraordinary properties are still lacking. Here, an integrated experimental and theoretical approach is adopted to reveal the presence of Cu-dominated low-energy optical phonons in the Cu-based argyrodite Cu7PS6. These phonons yield strong acoustic-optical phonon scattering through avoided crossing, enabling ultralow lattice thermal conductivity. The Unified Theory of thermal transport is employed to analyze heat conduction and successfully reproduce the experimental amorphous-like ultralow lattice thermal conductivities, ranging from 0.43 to 0.58 W m−1 K−1, in the temperature range of 100–400 K. The study reveals that the amorphous-like ultralow thermal conductivity of Cu7PS6 stems from a significantly dominant wave-like conduction mechanism. Moreover, the simulations elucidate the wave-like thermal transport mainly results from the contribution of Cu-associated low-energy overlapping optical phonons. This study highlights the crucial role of low-energy and overlapping optical modes in facilitating amorphous-like ultralow thermal transport, providing a thorough understanding of the underlying complex dynamics of argyrodites.

Loading...
Thumbnail Image
Item

Unveiling the phonon scattering mechanisms in half-Heusler thermoelectric compounds

2020, He, Ran, Zhu, Taishan, Wang, Yumei, Wolff, Ulrike, Jaud, Jean-Christophe, Sotnikov, Andrei, Potapov, Pavel, Wolf, Daniel, Ying, Pingjun, Wood, Max, Liu, Zhenhui, Feng, Le, Perez Rodriguez, Nicolas, Snyder, G. Jeffrey, Grossman, Jeffrey C., Nielsch, Kornelius, Schierning, Gabi

Half-Heusler (HH) compounds are among the most promising thermoelectric (TE) materials for large-scale applications due to their superior properties such as high power factor, excellent mechanical and thermal reliability, and non-toxicity. Their only drawback is the remaining-high lattice thermal conductivity. Various mechanisms were reported with claimed effectiveness to enhance the phonon scattering of HH compounds including grain-boundary scattering, phase separation, and electron–phonon interaction. In this work, however, we show that point-defect scattering has been the dominant mechanism for phonon scattering other than the intrinsic phonon–phonon interaction for ZrCoSb and possibly many other HH compounds. Induced by the charge-compensation effect, the formation of Co/4d Frenkel point defects is responsible for the drastic reduction of lattice thermal conductivity in ZrCoSb1−xSnx. Our work systematically depicts the phonon scattering profile of HH compounds and illuminates subsequent material optimizations.

Loading...
Thumbnail Image
Item

Towards tellurium-free thermoelectric modules for power generation from low-grade heat

2021, Ying, Pingjun, He, Ran, Mao, Jun, Zhang, Qihao, Reith, Heiko, Sui, Jiehe, Ren, Zhifeng, Nielsch, Kornelius, Schierning, Gabi

Thermoelectric technology converts heat into electricity directly and is a promising source of clean electricity. Commercial thermoelectric modules have relied on Bi2Te3-based compounds because of their unparalleled thermoelectric properties at temperatures associated with low-grade heat (<550 K). However, the scarcity of elemental Te greatly limits the applicability of such modules. Here we report the performance of thermoelectric modules assembled from Bi2Te3-substitute compounds, including p-type MgAgSb and n-type Mg3(Sb,Bi)2, by using a simple, versatile, and thus scalable processing routine. For a temperature difference of ~250 K, whereas a single-stage module displayed a conversion efficiency of ~6.5%, a module using segmented n-type legs displayed a record efficiency of ~7.0% that is comparable to the state-of-the-art Bi2Te3-based thermoelectric modules. Our work demonstrates the feasibility and scalability of high-performance thermoelectric modules based on sustainable elements for recovering low-grade heat.

Loading...
Thumbnail Image
Item

Influence of Nanoparticle Processing on the Thermoelectric Properties of (BixSb1−X)2Te3 Ternary Alloys

2021, Salloum, Sarah, Bendt, Georg, Heidelmann, Markus, Loza, Kateryna, Bayesteh, Samaneh, Izadi, M. Sepideh, Patrick, Kawulok, He, Ran, Schlörb, Heike, Perez, Nicolas, Reith, Heiko, Nielsch, Kornelius, Schierning, Gabi, Schulz, Stephan

The synthesis of phase‐pure ternary solutions of tetradymite‐type materials (BixSb1−x)2Te3 (x=0.25; 0.50; 0.75) in an ionic liquid approach has been carried out. The nanoparticles are characterized by means of energy‐dispersive X‐ray spectroscopy (EDX), powder X‐ray diffraction (PXRD), scanning electron microscopy (SEM), and transmission electron microscopy. In addition, the role of different processing approaches on the thermoelectric properties ‐ Seebeck coefficient as well as electrical and thermal conductivity ‐ is demonstrated.

Loading...
Thumbnail Image
Item

Charting lattice thermal conductivity for inorganic crystals and discovering rare earth chalcogenides for thermoelectrics

2021, Zhu, Taishan, He, Ran, Gong, Sheng, Xie, Tian, Gorai, Prashun, Nielsch, Kornelius, Grossman, Jeffrey C.

Thermoelectric power generation represents a promising approach to utilize waste heat. The most effective thermoelectric materials exhibit low thermal conductivity κ. However, less than 5% out of about 105 synthesized inorganic materials are documented with their κ values, while for the remaining 95% κ values are missing and challenging to predict. In this work, by combining graph neural networks and random forest approaches, we predict the thermal conductivity of all known inorganic materials in the Inorganic Crystal Structure Database, and chart the structural chemistry of κ into extended van-Arkel triangles. Together with the newly developed κ map and our theoretical tool, we identify rare-earth chalcogenides as promising candidates, of which we measured ZT exceeding 1.0. We note that the κ chart can be further explored, and our computational and analytical tools are applicable generally for materials informatics.

Loading...
Thumbnail Image
Item

High-Pressure-Sintering-Induced Microstructural Engineering for an Ultimate Phonon Scattering of Thermoelectric Half-Heusler Compounds

2021, He, Ran, Zhu, Taishan, Ying, Pingjun, Chen, Jie, Giebeler, Lars, Kühn, Uta, Grossman, Jeffrey C., Wang, Yumei, Nielsch, Kornelius

Thermal management is of vital importance in various modern technologies such as portable electronics, photovoltaics, and thermoelectric devices. Impeding phonon transport remains one of the most challenging tasks for improving the thermoelectric performance of certain materials such as half-Heusler compounds. Herein, a significant reduction of lattice thermal conductivity (κL) is achieved by applying a pressure of ≈1 GPa to sinter a broad range of half-Heusler compounds. Contrasting with the common sintering pressure of less than 100 MPa, the gigapascal-level pressure enables densification at a lower temperature, thus greatly modifying the structural characteristics for an intensified phonon scattering. A maximum κL reduction of ≈83% is realized for HfCoSb from 14 to 2.5 W m−1 K−1 at 300 K with more than 95% relative density. The realized low κL originates from a remarkable grain-size refinement to below 100 nm together with the abundant in-grain defects, as determined by microscopy investigations. This work uncovers the phonon transport properties of half-Heusler compounds under unconventional microstructures, thus showing the potential of high-pressure compaction in advancing the performance of thermoelectric materials.

Loading...
Thumbnail Image
Item

The Effects of Excess Co on the Phase Composition and Thermoelectric Properties of Half-Heusler NbCoSb

2018-5-11, Huang, Lihong, Wang, Junchen, Chen, Xi, He, Ran, Shuai, Jing, Zhang, Jianjun, Zhang, Qinyong, Ren, Zhifeng

NbCoSb with nominal 19 valence electrons, and is supposed to be metallic, has recently been reported to also exhibit the thermoelectric properties of a heavily doped n-type semiconductor. In this study, we prepared Co-rich NbCo1+xSb samples (x = 0, 0.2, 0.3, 0.4, 0.5), and their phase compositions, microstructures and thermoelectric properties were investigated. The Seebeck coefficient increased a great deal with increasing x, due to decreasing carrier concentration, and the total thermal conductivity reduced mainly because of declining κe. Finally, a peak thermoelectric figure of merit, ZT, was about 0.46 for NbCo1.3Sb at 973 K. This enhancement was mainly attributed to the reduction of electric thermal conductivity and the increase of Seebeck coefficient. The excess Co had effects on the carrier concentration, deformation potential Edef and DOS effective mass m*. Adding an excessive amount of Co leads to a very high Edef, which was detrimental for transport characteristics.

Loading...
Thumbnail Image
Item

Grain Boundary Phases in NbFeSb Half-Heusler Alloys: A New Avenue to Tune Transport Properties of Thermoelectric Materials

2023, Bueno Villoro, Ruben, Zavanelli, Duncan, Jung, Chanwon, Mattlat, Dominique Alexander, Hatami Naderloo, Raana, Pérez, Nicolás, Nielsch, Kornelius, Snyder, Gerald Jeffrey, Scheu, Christina, He, Ran, Zhang, Siyuan

Many thermoelectric materials benefit from complex microstructures. Grain boundaries (GBs) in nanocrystalline thermoelectrics cause desirable reduction in the thermal conductivity by scattering phonons, but often lead to unwanted loss in the electrical conductivity by scattering charge carriers. Therefore, modifying GBs to suppress their electrical resistivity plays a pivotal role in the enhancement of thermoelectric performance, zT. In this work, different characteristics of GB phases in Ti-doped NbFeSb half-Heusler compounds are revealed using a combination of scanning transmission electron microscopy and atom probe tomography. The GB phases adopt a hexagonal close-packed lattice, which is structurally distinct from the half-Heusler grains. Enrichment of Fe is found at GBs in Nb0.95Ti0.05FeSb, but accumulation of Ti dopants at GBs in Nb0.80Ti0.20FeSb, correlating to the bad and good electrical conductivity of the respective GBs. Such resistive to conductive GB phase transition opens up new design space to decouple the intertwined electronic and phononic transport in thermoelectric materials.