Search Results

Now showing 1 - 2 of 2
  • Item
    Stochastic two-scale convergence and Young measures
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Heida, Martin; Neukamm, Stefan; Varga, Mario
    In this paper we compare the notion of stochastic two-scale convergence in the mean (by Bourgeat, Mikelić and Wright), the notion of stochastic unfolding (recently introduced by the authors), and the quenched notion of stochastic two-scale convergence (by Zhikov and Pyatnitskii). In particular, we introduce stochastic two-scale Young measures as a tool to compare mean and quenched limits. Moreover, we discuss two examples, which can be naturally analyzed via stochastic unfolding, but which cannot be treated via quenched stochastic two-scale convergence.
  • Item
    Homogenization of a porous intercalation electrode with phase separation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Heida, Martin; Landstorfer, Manuel; Liero, Matthias
    In this work, we derive a new model framework for a porous intercalation electrode with a phase separating active material upon lithium intercalation. We start from a microscopic model consisting of transport equations for lithium ions in an electrolyte phase and intercalated lithium in a solid active phase. Both are coupled through a Neumann--boundary condition modeling the lithium intercalation reaction. The active material phase is considered to be phase separating upon lithium intercalation. We assume that the porous material is a given periodic microstructure and perform analytical homogenization. Effectively, the microscopic model consists of a diffusion and a Cahn--Hilliard equation, whereas the limit model consists of a diffusion and an Allen--Cahn equation. Thus we observe a Cahn--Hilliard to Allen--Cahn transition during the upscaling process. In the sense of gradient flows, the transition goes in hand with a change in the underlying metric structure of the PDE system.