Search Results

Now showing 1 - 2 of 2
  • Item
    Homogenization of a porous intercalation electrode with phase separation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Heida, Martin; Landstorfer, Manuel; Liero, Matthias
    In this work, we derive a new model framework for a porous intercalation electrode with a phase separating active material upon lithium intercalation. We start from a microscopic model consisting of transport equations for lithium ions in an electrolyte phase and intercalated lithium in a solid active phase. Both are coupled through a Neumann--boundary condition modeling the lithium intercalation reaction. The active material phase is considered to be phase separating upon lithium intercalation. We assume that the porous material is a given periodic microstructure and perform analytical homogenization. Effectively, the microscopic model consists of a diffusion and a Cahn--Hilliard equation, whereas the limit model consists of a diffusion and an Allen--Cahn equation. Thus we observe a Cahn--Hilliard to Allen--Cahn transition during the upscaling process. In the sense of gradient flows, the transition goes in hand with a change in the underlying metric structure of the PDE system.
  • Item
    Homogenization theory for the random conductance model with degenerate ergodic weights and unbounded-range jumps
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Flegel, Franziska; Heida, Martin; Slowik, Martin
    We study homogenization properties of the discrete Laplace operator with random conductances on a large domain in Zd. More precisely, we prove almost-sure homogenization of the discrete Poisson equation and of the top of the Dirichlet spectrum. We assume that the conductances are stationary, ergodic and nearest-neighbor conductances are positive. In contrast to earlier results, we do not require uniform ellipticity but certain integrability conditions on the lower and upper tails of the conductances. We further allow jumps of arbitrary length. Without the long-range connections, the integrability condition on the lower tail is optimal for spectral homogenization. It coincides with a necessary condition for the validity of a local central limit theorem for the random walk among random conductances. As an application of spectral homogenization, we prove a quenched large deviation principle for the normalized and rescaled local times of the random walk in a growing box. Our proofs are based on a compactness result for the Laplacian’s Dirichlet energy, Poincaré inequalities, Moser iteration and two-scale convergence.