Search Results

Now showing 1 - 4 of 4
  • Item
    Homogenization of a porous intercalation electrode with phase separation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Heida, Martin; Landstorfer, Manuel; Liero, Matthias
    In this work, we derive a new model framework for a porous intercalation electrode with a phase separating active material upon lithium intercalation. We start from a microscopic model consisting of transport equations for lithium ions in an electrolyte phase and intercalated lithium in a solid active phase. Both are coupled through a Neumann--boundary condition modeling the lithium intercalation reaction. The active material phase is considered to be phase separating upon lithium intercalation. We assume that the porous material is a given periodic microstructure and perform analytical homogenization. Effectively, the microscopic model consists of a diffusion and a Cahn--Hilliard equation, whereas the limit model consists of a diffusion and an Allen--Cahn equation. Thus we observe a Cahn--Hilliard to Allen--Cahn transition during the upscaling process. In the sense of gradient flows, the transition goes in hand with a change in the underlying metric structure of the PDE system.
  • Item
    Stochastic two-scale convergence and Young measures
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Heida, Martin; Neukamm, Stefan; Varga, Mario
    In this paper we compare the notion of stochastic two-scale convergence in the mean (by Bourgeat, Mikelić and Wright), the notion of stochastic unfolding (recently introduced by the authors), and the quenched notion of stochastic two-scale convergence (by Zhikov and Pyatnitskii). In particular, we introduce stochastic two-scale Young measures as a tool to compare mean and quenched limits. Moreover, we discuss two examples, which can be naturally analyzed via stochastic unfolding, but which cannot be treated via quenched stochastic two-scale convergence.
  • Item
    Stochastic unfolding and homogenization
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Heida, Martin; Neukamm, Stefan; Varga, Mario
    The notion of periodic two-scale convergence and the method of periodic un- folding are prominent and useful tools in multiscale modeling and analysis of PDEs with rapidly oscillating periodic coecients. In this paper we are interested in the theory of stochastic homogenization for continuum mechanical models in form of PDEs with random coecients, describing random heterogeneous materials. The notion of periodic two-scale convergence has been extended in dierent ways to the stochastic case. In this work we introduce a stochastic unfolding method that fea- tures many similarities to periodic unfolding. In particular it allows to characterize the notion of stochastic two-scale convergence in the mean by mere convergence in an extended space. We illustrate the method on the (classical) example of stochastic homogenization of convex integral functionals, and prove a stochastic homogeniza- tion result for an non-convex evolution equation of Allen-Cahn type. Moreover, we discuss the relation of stochastic unfolding to previously introduced notions of (quenched and mean) stochastic two-scale convergence. The method descibed in the present paper extends to the continuum setting the notion of discrete stochastic unfolding, as recently introduced by the second and third author in the context of discrete-to-continuum transition.
  • Item
    Stochastic homogenization of Lambda-convex gradient flows
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Heida, Martin; Neukamm, Stefan; Varga, Mario
    In this paper we present a stochastic homogenization result for a class of Hilbert space evolutionary gradient systems driven by a quadratic dissipation potential and a Λ-convex energy functional featuring random and rapidly oscillating coefficients. Specific examples included in the result are Allen--Cahn type equations and evolutionary equations driven by the p-Laplace operator with p ∈ in (1, ∞). The homogenization procedure we apply is based on a stochastic two-scale convergence approach. In particular, we define a stochastic unfolding operator which can be considered as a random counterpart of the well-established notion of periodic unfolding. The stochastic unfolding procedure grants a very convenient method for homogenization problems defined in terms of (Λ-)convex functionals.