Search Results

Now showing 1 - 3 of 3
  • Item
    Combining Hydrophilic and Hydrophobic Materials in 3D Printing for Fabricating Microfluidic Devices with Spatial Wettability
    (Weinheim : Wiley, 2021) Männel, Max J.; Weigel, Niclas; Hauck, Nicolas; Heida, Thomas; Thiele, Julian
    The fabrication of microfluidic flow cells via projection micro-stereolithography (PμSL) has excited researchers in recent years. However, due to the inherent process properties of most commercial PμSL, microfluidic devices are fabricated in a monolithic fashion with uniform material properties across a flow cell. Yet, the large surface-to-volume ratio in microfluidics demands to tailor microchannel surface properties—particularly in planar microchannel arrangements—with spatial control and micron-scale resolution to form a desired flow profile, e.g., emulsion droplets. Here, the fabrication of planar microfluidic devices by PμSLbased 3D printing with spatial control over surface properties is presented. For that, homemade photopolymer formulations being either hydrophilic or hydrophobic are designed. Adding acrylic acid to a resin containing poly(ethylene glycol) diacrylate lowers the contact angle down to 0° against water creating a superhydrophilic surface. By utilizing 1H,1H,2H,2H-perfluorodecyl acrylate, a photopolymer formulation allowing for 3D-printing a hydrophobic microchannel surface with a contact angle >120° against water is obtained. Combining these two materials, microfluidic flow cells with spatially defined wettability are 3D-printed for emulsion formation. Finally, the resin vat of the commercial PμSL printer is switched during the printing process for fabricating multimaterial geometries, as exemplarily applied for realizing a hydrophobic-hydrophilic-hydrophobic device for forming O/W/O double emulsions.
  • Item
    Microfluidic fabrication of click chemistry-mediated hyaluronic acid microgels: A bottom-up material guide to tailor a microgel's physicochemical and mechanical properties
    (Basel : MDPI, 2020) Heida, Thomas; Otto, Oliver; Biedenweg, Doreen; Hauck, Nicolas; Thiele, Julian
    The demand for tailored, micrometer-scaled biomaterials in cell biology and (cell-free) biotechnology has led to the development of tunable microgel systems based on natural polymers, such as hyaluronic acid (HA). To precisely tailor their physicochemical and mechanical properties and thus to address the need for well-defined microgel systems, in this study, a bottom-up material guide is presented that highlights the synergy between highly selective bio-orthogonal click chemistry strategies and the versatility of a droplet microfluidics (MF)-assisted microgel design. By employing MF, microgels based on modified HA-derivates and homobifunctional poly(ethylene glycol) (PEG)-crosslinkers are prepared via three different types of click reaction: Diels–Alder [4 + 2] cycloaddition, strain-promoted azide-alkyne cycloaddition (SPAAC), and UV-initiated thiol–ene reaction. First, chemical modification strategies of HA are screened in-depth. Beyond the microfluidic processing of HA-derivates yielding monodisperse microgels, in an analytical study, we show that their physicochemical and mechanical properties—e.g., permeability, (thermo)stability, and elasticity—can be systematically adapted with respect to the type of click reaction and PEG-crosslinker concentration. In addition, we highlight the versatility of our HA-microgel design by preparing non-spherical microgels and introduce, for the first time, a selective, hetero-trifunctional HA-based microgel system with multiple binding sites. As a result, a holistic material guide is provided to tailor fundamental properties of HA-microgels for their potential application in cell biology and (cell-free) biotechnology.
  • Item
    Cell-free protein synthesis and in situ immobilization of deGFP-MatB in polymer microgels for malonate-to-malonyl CoA conversion
    (Cambridge : RSC, 2020) Köhler, Tony; Heida, Thomas; Hoefgen, Sandra; Weigel, Niclas; Valiante, Vito; Thiele, Julian
    In the present work, microgels were utilized as a cell-free reaction environment to produce a functional malonyl-CoA synthetase (deGFP-MatB) under geometry-controlled transcription and translation. Our approach combines the straight-forward optimization of overall protein yield of an E. coli-based cell-free protein synthesis (CFPS) system based on concentration screening of magnesium and potassium glutamate, DNA as well as polyethylene glycol (PEG), and its innovative usage in microgel-based production of a key enzyme of the polyketide synthesis pathway. After partial modification of the carboxyl groups of hyaluronic acid (HA) with 5′-methylfuran groups via 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride (DMTMM)-activation, these were further functionalized with dibenzocyclooctyne (DBCO) and nitrilotriacetic acid (NTA) groups by bio-orthogonal [4+2] Diels-Alder cycloaddition to yield a bifunctional macromer. After coupling the DBCO groups with azide-functionalized DNA, containing the genetic information for deGFP-MatB, via strain-promoted azide-alkyne cycloaddition (SPAAC), the DNA-/NTA-functionalized HA macromer was utilized as base material together with maleimide-functionalized PEG (PEG-mal2) as the crosslinker to form bifunctional microgels utilizing water-in-oil (W/O) microemulsions. As-formed microgels were incubated with nickel sulfate to activate the NTA groups and provide binding sites for deGFP-MatB, which contained six histidine residues (His-tag) for that purpose. The optimized CFPS mixture was loaded into the microgels to initiate the formation of deGFP-MatB, which was detected by a clear increase in fluorescence exclusively inside the microgel volume. Functionality of both, the bound and the decoupled enzyme was proven by reaction with malonate to yield malonyl CoA, as confirmed by a colorimetric assay. © 2020 The Royal Society of Chemistry.