Search Results

Now showing 1 - 2 of 2
  • Item
    Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade
    (Chichester : John Wiley and Sons Ltd, 2011) Fader, M.; Gerten, D.; Thammer, M.; Heinke, J.; Lotze-Campen, H.; Lucht, W.; Cramer, W.
    The need to increase food production for a growing world population makes an assessment of global agricultural water productivities and virtual water flows important. Using the hydrology and agro-biosphere model LPJmL, we quantify at 0.5° resolution the amount of blue and green water (irrigation and precipitation water) needed to produce one unit of crop yield, for 11 of the world's major crop types. Based on these, we also quantify the agricultural water footprints (WFP) of all countries, for the period 1998-2002, distinguishing internal and external WFP (virtual water imported from other countries) and their blue and green components, respectively. Moreover, we calculate water savings and losses, and for the first time also land savings and losses, through international trade with these products. The consistent separation of blue and green water flows and footprints shows that green water globally dominates both the internal and external WFP (84 % of the global WFP and 94 % of the external WFP rely on green water). While no country ranks among the top ten with respect to all water footprints calculated here, Pakistan and Iran demonstrate high absolute and per capita blue WFP, and the US and India demonstrate high absolute green and blue WFPs. The external WFPs are relatively small (6 % of the total global blue WFP, 16 % of the total global green WFP). Nevertheless, current trade of the products considered here saves significant water volumes and land areas (∼263 km3 and ∼41 Mha, respectively, equivalent to 5 % of the sowing area of the considered crops and 3.5 % of the annual precipitation on this area). Relating the proportions of external to internal blue/green WFP to the per capita WFPs allows recognizing that only a few countries consume more water from abroad than from their own territory and have at the same time above-average WFPs. Thus, countries with high per capita water consumption affect mainly the water availability in their own country. Finally, this study finds that flows/savings of both virtual water and virtual land need to be analysed together, since they are intrinsically related.
  • Item
    Climate-driven interannual variability of water scarcity in food production potential: A global analysis
    (Göttingen : Copernicus GmbH, 2014) Kummu, M.; Gerten, D.; Heinke, J.; Konzmann, M.; Varis, O.
    Interannual climatic and hydrologic variability has been substantial during the past decades in many regions. While climate variability and its impacts on precipitation and soil moisture have been studied intensively, less is known on subsequent implications for global food production. In this paper we quantify effects of hydroclimatic variability on global "green" and "blue" water availability and demand in global agriculture, and thus complement former studies that have focused merely on long-term averages. Moreover, we assess some options to overcome chronic or sporadic water scarcity. The analysis is based on historical climate forcing data sets over the period 1977-2006, while demography, diet composition and land use are fixed to reference conditions (year 2000). In doing so, we isolate the effect of interannual hydroclimatic variability from other factors that drive food production. We analyse the potential of food production units (FPUs) to produce a reference diet for their inhabitants (3000 kcal cap-1 day -1, with 80% vegetal food and 20% animal products). We applied the LPJmL vegetation and hydrology model to calculate the variation in green-blue water availability and the water requirements to produce that very diet. An FPU was considered water scarce if its water availability was not sufficient to produce the diet (i.e. assuming food self-sufficiency to estimate dependency on trade from elsewhere). We found that 24% of the world's population lives in chronically water-scarce FPUs (i.e. water is scarce every year), while an additional 19% live under occasional water scarcity (water is scarce in some years). Among these 2.6 billion people altogether, 55% would have to rely on international trade to reach the reference diet, while for 24% domestic trade would be enough. For the remaining 21% of the population exposed to some degree of water scarcity, local food storage and/or intermittent trade would be enough to secure the reference diet over the occasional dry years.