Search Results

Now showing 1 - 2 of 2
  • Item
    Simulating the effect of tillage practices with the global ecosystem model LPJmL (version 5.0-tillage)
    (Katlenburg-Lindau : Copernicus, 2019) Lutz, Femke; Herzfeld, Tobias; Heinke, Jens; Rolinski, Susanne; Schaphoff, Sibyll; von Bloh, Werner; Stoorvogel, Jetse J.; Müller, Christoph
    The effects of tillage on soil properties, crop productivity, and global greenhouse gas emissions have been discussed in the last decades. Global ecosystem models have limited capacity to simulate the various effects of tillage. With respect to the decomposition of soil organic matter, they either assume a constant increase due to tillage or they ignore the effects of tillage. Hence, they do not allow for analysing the effects of tillage and cannot evaluate, for example, reduced tillage or no tillage (referred to here as “no-till”) practises as mitigation practices for climate change. In this paper, we describe the implementation of tillage-related practices in the global ecosystem model LPJmL. The extended model is evaluated against reported differences between tillage and no-till management on several soil properties. To this end, simulation results are compared with published meta-analyses on tillage effects. In general, the model is able to reproduce observed tillage effects on global, as well as regional, patterns of carbon and water fluxes. However, modelled N fluxes deviate from the literature values and need further study. The addition of the tillage module to LPJmL5 opens up opportunities to assess the impact of agricultural soil management practices under different scenarios with implications for agricultural productivity, carbon sequestration, greenhouse gas emissions, and other environmental indicators.
  • Item
    A generic pixel-to-point comparison for simulated large-scale ecosystem properties and ground-based observations: An example from the Amazon region
    (Katlenburg-Lindau : Copernicus, 2018) Rammig, Anja; Heinke, Jens; Hofhansl, Florian; Verbeeck, Hans; Baker, Timothy R.; Christoffersen, Bradley; Ciais, Philippe; De Deurwaerder, Hannes; Fleischer, Katrin; Galbraith, David; Guimberteau, Matthieu; Huth, Andreas; Johnson, Michelle; Krujit, Bart; Langerwisch, Fanny; Meir, Patrick; Papastefanou, Phillip; Sampaio, Gilvan; Thonicke, Kirsten; von Randow, Celso; Zang, Christian; Rödig, Edna
    Comparing model output and observed data is an important step for assessing model performance and quality of simulation results. However, such comparisons are often hampered by differences in spatial scales between local point observations and large-scale simulations of grid cells or pixels. In this study, we propose a generic approach for a pixel-to-point comparison and provide statistical measures accounting for the uncertainty resulting from landscape variability and measurement errors in ecosystem variables. The basic concept of our approach is to determine the statistical properties of small-scale (within-pixel) variability and observational errors, and to use this information to correct for their effect when large-scale area averages (pixel) are compared to small-scale point estimates. We demonstrate our approach by comparing simulated values of aboveground biomass, woody productivity (woody net primary productivity, NPP) and residence time of woody biomass from four dynamic global vegetation models (DGVMs) with measured inventory data from permanent plots in the Amazon rainforest, a region with the typical problem of low data availability, potential scale mismatch and thus high model uncertainty. We find that the DGVMs under- and overestimate aboveground biomass by 25% and up to 60%, respectively. Our comparison metrics provide a quantitative measure for model-data agreement and show moderate to good agreement with the region-wide spatial biomass pattern detected by plot observations. However, all four DGVMs overestimate woody productivity and underestimate residence time of woody biomass even when accounting for the large uncertainty range of the observational data. This is because DGVMs do not represent the relation between productivity and residence time of woody biomass correctly. Thus, the DGVMs may simulate the correct large-scale patterns of biomass but for the wrong reasons. We conclude that more information about the underlying processes driving biomass distribution are necessary to improve DGVMs. Our approach provides robust statistical measures for any pixel-to-point comparison, which is applicable for evaluation of models and remote-sensing products.