Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Mineral dust in central Asia: 18-month lidar measurements in Tajikistan during the central Asian dust experiment (CADEX)

2018, Hofer, Julian, Althausen, Dietrich, Abdullaev, Sabur F., Makhmudov, Abduvosit, Nazarov, Bakhron I., Schettler, Georg, Fomba, K.Wadinga, Müller, Konrad, Heinold, Bernd, Baars, Holger, Engelmann, Ronny, Ansmann, Albert, Nicolae, D., Makoto, A., Vassilis, A., Balis, D., Behrendt, A., Comeron, A., Gibert, F., Landulfo, E., McCormick, M.P., Senff, C., Veselovskii, I., Wandinger, U.

Tajikistan is often affected by atmospheric mineral dust. The direct and indirect radiative effects of dust play a sensitive role in the climate system in Central Asia. The Central Asian Dust Experiment (CADEX) provides first lidar measurements in Tajikistan. The autonomous multiwavelength polarization Raman lidar PollyXT was operated for 1.5 years (2015/16) in Dushanbe. In spring, lofted layers of long-range transported dust and in summer/ autumn, lower laying dust from local or regional sources with large optical thicknesses occurred.

Loading...
Thumbnail Image
Item

Dust impacts on radiative effects of black carbon aerosol in Central Asia

2019, Tegen, Ina, Heinold, Bernd

The radiative effect of mineral dust and black carbon aerosol are investigated with aerosolclimate model simulations with fixed sea surface temperatures as boundary condition. The semi-direct effects of the absorbing aerosol are assessed as the residual between the total direct radiative effect and the instantaneous direct radiative effect of the aerosol species. For Central Asia the presence of mineral dust aerosol below a black carbon aerosol layer enhances the positive radiative effect of the black carbon aerosol. © 2019 The Authors, published by EDP Sciences.

Loading...
Thumbnail Image
Item

Modelling mineral dust in the Central Asian region

2019, Heinold, Bernd, Tegen, Ina

In Central Asia, climate and air quality are largely affected by local and long-travelled mineral dust. For the last century, the area has experienced severe land-use changes and water exploitation producing new dust sources. Today global warming causes rapid shrinking of mountain glaciers with yet unknow consequences for dust and its climate effects. Despite the importance for a growing population, only little is known about sources, transport pathways and properties of Central Asian dust. A transport study with a global aerosol-climate model is undertaken to investigate the life cycle of mineral dust in Central Asia for the period of a remote-sensing campaign in Tajikistan in 2015-2016. An initial evaluation with sun photometer measurements shows reasonable agreement for the average amount of dust, but a significant weakness of the model in reproducing the seasonality of local dust with maximum activity in summer. Source apportionment reveals a major contribution from Arabia throughout the year in accordance with observations. In the model, local sources mainly contribute in spring and autumn while summer-time dust production is underestimated. The results underline the importance of considering long-range transport and, locally, a detailed representation of atmospheric dynamics and surface characteristics for modelling dust in Central Asia. © 2019 The Authors, published by EDP Sciences.