Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Regional modelling of Saharan dust and biomass-burning smoke, Part 2: Direct radiative forcing and atmospheric dynamic response

2017, Heinold, Bernd, Tegen, Ina, Bauer, Stefan, Wendisch, Manfred

The direct radiative forcing and dynamic atmospheric response due to Saharan dust and biomass-burning aerosol particles are presented for a case study during the SAMUM-2 field campaign in January and February 2008. The regional model system COSMO-MUSCAT is used. It allows online interaction of the computed dust and smoke load with the solar and terrestrial radiation and with the model dynamics. Model results of upward solar irradiances are evaluated against airborne radiation measurements in the Cape Verde region. The comparison shows a good agreement for the case of dust and smoke mixture. Dust and smoke particles influence the atmospheric dynamics by changing the radiative heating rates. The related pressure perturbations modify local and synoptic scale air-flow patterns. In the radiative feedback simulations, the Hadley circulation is enhanced and convergence zones occur along the Guinea coast. Thus, the smoke particles spread more than 5◦ further north and the equatorward transport is reduced. Within the convergence zones, Saharan dust and biomass-burning material are more effectively advected towards the Cape Verdes. Given the model uncertainties, the agreement between the modelled and observed aerosol distribution is locally improved when aerosol–radiation interaction is considered.

Loading...
Thumbnail Image
Item

Dust mobilization and aerosol transport from West Africa to Cape Verde - a meteorological overview of SAMUM-2

2017, Knippertz, Peter, Tesche, Matthias, Heinold, Bernd, Kandler, Konrad, Toledano, Carlos, Esselborn, Michael

The second field campaign of the SAharan Mineral dUst experiMent (SAMUM-2) was performed between 15 January and 14 February 2008 at the airport of Praia, Cape Verde, and provided valuable information to study the westward transport of Saharan dust and the mixing with biomass-burning smoke and sea-salt aerosol. Here lidar, meteorological, and particle measurements at Praia, together with operational analyses, trajectories, and satellite and synoptic station data are used to give an overview of the meteorological conditions and to place other SAMUM-2 measurements into a large-scale context. It is demonstrated that wintertime dust conditions at Cape Verde are closely related to the movement and intensification of mid-latitude high-pressure systems and the associated pressure gradients at their southern flanks. These cause dust emission over Mauritania, Mali, and Niger, and subsequent westward transport to Cape Verde within about 1–5 d. Dust emissions often peak around midday, suggesting a relation to daytime mixing of momentum from nocturnal low-level jets to the surface. The dust layer over Cape Verde is usually restricted to the lowest 1.5 km of the atmosphere. During periods with near-surface wind speeds about 5.5 ms−1, a maritime aerosol layer develops which often mixes with dust from above. On most days, the middle levels up to about 5 km additionally contain smoke that can be traced back to sources in southernWest Africa. Above this layer, clean air masses are transported to Cape Verde with the westerly flow at the southern side of the subtropical jet. The penetration of extra-tropical disturbances to low latitudes can bring troposphere-deep westerly flow and unusually clean conditions to the region.