Search Results

Now showing 1 - 10 of 21
  • Item
    Viscoelastic Behavior of Embroidered Scaffolds for ACL Tissue Engineering Made of PLA and P(LA-CL) After In Vitro Degradation
    (Basel : Molecular Diversity Preservation International, 2019) Hahn, Judith; Schulze-Tanzil, Schulze-Tanzil; Schröpfer, Michaela; Meyer, Michael; Gögele, Clemens; Hoyer, Mariann; Spickenheuer, Axel; Heinrich, Gert; Breier, Annette
    A rupture of the anterior cruciate ligament (ACL) is the most common knee ligament injury. Current applied reconstruction methods have limitations in terms of graft availability and mechanical properties. A new approach could be the use of a tissue engineering construct that temporarily reflects the mechanical properties of native ligament tissues and acts as a carrier structure for cell seeding. In this study, embroidered scaffolds composed of polylactic acid (PLA) and poly(lactic-co-"-caprolactone) (P(LA-CL)) threads were tested mechanically for their viscoelastic behavior under in vitro degradation. The relaxation behavior of both scaffold types (moco: mono-component scaffold made of PLA threads, bico: bi-component scaffold made of PLA and P(LA-CL) threads) was comparable to native lapine ACL. Most of the lapine ACL cells survived 32 days of cell culture and grew along the fibers. Cell vitality was comparable for moco and bico scaffolds. Lapine ACL cells were able to adhere to the polymer surfaces and spread along the threads throughout the scaffold. The mechanical behavior of degrading matrices with and without cells showed no significant differences. These results demonstrate the potential of embroidered scaffolds as an ACL tissue engineering approach. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Electrical and melt rheological characterization of PC and co-continuous PC/SAN blends filled with CNTs: Relationship between melt-mixing parameters, filler dispersion, and filler aspect ratio
    (Hoboken, NJ [u.a.] : Wiley, 2018) Liebscher, Marco; Domurath, Jan; Krause, Beate; Saphiannikova, Marina; Heinrich, Gert; Pötschke, Petra
    Electrical and melt rheological properties of melt-mixed polycarbonate (PC) and co-continuous PC/poly(styrene–acrylonitrile) (SAN) blends with carbon nanotubes (CNTs) are investigated. Using two sets of mixing parameters, different states of filler dispersion are obtained. With increasing CNT dispersion, an increase in electrical resistivity near the percolation threshold of PC–CNT composites and (PC + CNT)/SAN blends is observed. This suggests that the higher mixing energies required for better dispersion also result in a more severe reduction of the CNT aspect ratio; this effect was proven by CNT length measurements. Melt rheological studies show higher reinforcing effects for composites with worse dispersion. The Eilers equation, describing the melt viscosity as function of filler content, was used to fit the data and to obtain information about an apparent aspect ratio change, which was in accordance with measured CNT length reduction. Such fitting could be also transferred to the blends and serves for a qualitatively based discussion. © 2017 Wiley Periodicals
  • Item
    Online Structural-Health Monitoring of Glass Fiber-Reinforced Thermoplastics Using Different Carbon Allotropes in the Interphase
    (Basel : MDPI, 2018) Müller, Michael Thomas; Pötzsch, Hendrik Florian; Gohs, Uwe; Heinrich, Gert
    An electromechanical response behavior is realized by nanostructuring the glass fiber interphase with different highly electrically conductive carbon allotropes like carbon nanotubes (CNT), graphene nanoplatelets (GNP), or conductive carbon black (CB). The operational capability of these multifunctional glass fibers for an online structural-health monitoring is demonstrated in endless glass fiber-reinforced polypropylene. The electromechanical response behavior, during a static or dynamic three-point bending test of various carbon modifications, shows qualitative differences in the signal quality and sensitivity due to the different aspect ratios of the nanoparticles and the associated electrically conductive network densities in the interphase. Depending on the embedding position within the glass fiber-reinforced composite compression, shear and tension loadings of the fibers can be distinguished by different characteristics of the corresponding electrical signal. The occurrence of irreversible signal changes during the dynamic loading can be attributed to filler reorientation processes caused by polymer creeping or by destruction of electrically conductive paths by cracks in the glass fiber interphase.
  • Item
    Influence of Controlled Epoxidation of an Asymmetric Styrene/Butadiene Star Block Copolymer on Structural and Mechanical Properties
    (Basel : MDPI, 2020) Khatiwada, Shankar P.; Staudinger, Ulrike; Jehnichen, Dieter; Heinrich, Gert; Adhikari, Rameshwar
    The chemical modification (namely the epoxidation) of a star shaped block copolymer (BCP) based on polystyrene (PS) and polybutadiene (PB) and its effect on structural and mechanical properties of the polymer were investigated. Epoxidation degrees of 37 mol%, 58 mol%, and 82 mol% were achieved by the reaction of the copolymer with meta-chloroperoxy benzoic acid (m-CPBA) under controlled conditions. The BCP structure was found to change from lamellae-like to mixed-type morphologies for intermediate epoxidation level while leading to quite ordered cylindrical structures for the higher level of chemical modification. As a consequence, the glass transition temperature (Tg) of the soft PB component of the BCP shifted towards significantly higher temperature. A clear increase in tensile modulus and tensile strength with a moderate decrease in elongation at break was observed. The epoxidized BCPs are suitable as reactive templates for the fabrication of nanostructured thermosetting resins.
  • Item
    Blending In Situ Polyurethane-Urea with Different Kinds of Rubber: Performance and Compatibility Aspects
    (Basel : MDPI, 2018-11-02) Tahir, Muhammad; Heinrich, Gert; Mahmood, Nasir; Boldt, Regine; Wießner, Sven; Stöckelhuber, Klaus Werner
    Specific physical and reactive compatibilization strategies are applied to enhance the interfacial adhesion and mechanical properties of heterogeneous polymer blends. Another pertinent challenge is the need of energy-intensive blending methods to blend high-tech polymers such as the blending of a pre-made hard polyurethane (-urea) with rubbers. We developed and investigated a reactive blending method to prepare the outstanding blends based on polyurethane-urea and rubbers at a low blending temperature and without any interfacial compatibilizing agent. In this study, the polyurethane-urea (PUU) was synthesized via the methylene diphenyl diisocyanate end-capped prepolymer and m-phenylene diamine based precursor route during blending at 100 °C with polar (carboxylated nitrile rubber (XNBR) and chloroprene rubber (CR)) and non-polar (natural rubber (NR), styrene butadiene rubber (sSBR), and ethylene propylene butadiene rubber (EPDM)) rubbers. We found that the in situ PUU reinforces the tensile response at low strain region and the dynamic-mechanical response up to 150 °C in the case of all used rubbers. Scanning electron microscopy reveals a stronger rubber/PUU interface, which promotes an effective stress transfer between the blend phases. Furthermore, energy filtered transmission electron microscopy (EFTEM) based elemental carbon map identifies an interphase region along the interface between the nitrile rubber and in situ PUU phases of this exemplary blend type.
  • Item
    Tuning the Properties and Self-Healing Behavior of Ionically Modified Poly(isobutylene-co-isoprene) Rubber
    (Washington, DC : Soc., 2017) Suckow, Marcus; Mordvinkin, Anton; Roy, Manta; Singha, Nikhil K.; Heinrich, Gert; Voit, Brigitte; Saalwächter, Kay; Böhme, Frank
    The focus of this work is on the nature of self-healing of ionically modified rubbers obtained by reaction of brominated poly(isobutylene-co-isoprene) rubber (BIIR) with various alkylimidazoles such as 1-methylimidazole, 1-butylimidazole, 1-hexylimidazole, 1-nonylimidazole, and 1-(6-chlorohexyl)-1H-imidazole. Based on stress-strain and temperature dependent DMA measurements, a structural influence of the introduced ionic imidazolium moieties on the formation of ionic clusters and, as a consequence, on the mechanical strength and self-healing behavior of the samples could be evidenced. These results are fully supported by a molecular-level assessment of the network structure (cross-link and constraint density) and the dynamics of the ionic clusters using an advanced proton low-field NMR technique. The results show distinct correlations between the macroscopic behavior and molecular chain dynamics of the modified rubbers. In particular, it is shown that the optimization of material properties with regard to mechanical and self-healing behavior is limited by opposing tendencies. Samples with reduced chain dynamics exhibit superior mechanical behavior but lack on self-healing behavior. In spite of these limitations, the overall performance of some of our samples including self-healing behavior exceeds distinctly that of other self-healing rubbers described in the literature so far.
  • Item
    Effect of prestrain on the actuation characteristics of dielectric elastomers
    (Basel : MDPI, 2020) Kumar, Mayank; Sharma, Anutsek; Hait, Sakrit; Wießner, Sven; Heinrich, Gert; Arief, Injamamul; Naskar, Kinsuk; Stöckelhuber, Klaus Werner; Das, Amit
    Dielectric elastomers (DEs) represent a class of electroactive polymers that deform due to electrostatic attraction between oppositely charged electrodes under a varying electric field. Over the last couple of decades, DEs have garnered considerable attention due to their much-coveted actuation properties. As far as the precise measurement systems are concerned, however, there is no standard instrument or interface to quantify various related parameters, e.g., actuation stress, strain, voltage and creeping etc. In this communication, we present an in-depth study of dielectric actuation behavior of dielectric rubbers by the state-of-the-art “Dresden Smart Rubber Analyzer” (DSRA), designed and developed in-house. The instrument allowed us to elucidate various factors that could influence the output efficiency of the DEs. Herein, several non-conventional DEs such as hydrogenated nitrile rubber, nitrile rubber with different acrylonitrile contents, were employed as an electro-active matrix. The effect of viscoelastic creeping on the prestrain, molecular architecture of the matrices, e.g., nitrile content of nitrile-butadiene rubber (NBR) etc., are also discussed in detail.
  • Item
    Optimizing Variable-Axial Fiber-Reinforced Composite Laminates: The Direct Fiber Path Optimization Concept
    (London [u.a.] : Taylor & Francis, 2019) Bittrich, Lars; Spickenheuer, Axel; Almeida Jr., José Humberto S.; Müller, Sascha; Kroll, Lothar; Heinrich, Gert
    The concept of aligning reinforcing fibers in arbitrary directions offers a new perception of exploiting the anisotropic characteristic of the carbon fiber-reinforced polymer (CFRP) composites. Complementary to the design concept of multiaxial composites, a laminate reinforced with curvilinear fibers is called variable-axial (also known as variable stiffness and variable angle tow). The Tailored Fiber Placement (TFP) technology is well capable of manufacturing textile preforming with a variable-axial fiber design by using adapted embroidery machines. This work introduces a novel concept for simulation and optimization of curvilinear fiber-reinforced composites, where the novelty relies on the local optimization of both fiber angle and intrinsic thickness build-up concomitantly. This framework is called Direct Fiber Path Optimization (DFPO). Besides the description of DFPO, its capabilities are exemplified by optimizing a CFRP open-hole tensile specimen. Key results show a clear improvement compared to the current often used approach of applying principal stress trajectories for a variable-axial reinforcement pattern. © 2019 Lars Bittrich et al.
  • Item
    A new way of toughening of thermoset by dual-cured thermoplastic/thermosetting blend
    (Basel : MDPI, 2019) Khatiwada, Shankar P.; Gohs, Uwe; Lach, Ralf; Heinrich, Gert; Adhikari, Rameshwar
    The work aims at establishing the optimum conditions for dual thermal and electron beam curing of thermosetting systems modified by styrene/butadiene (SB)-based triblock copolymers in order to develop transparent and toughened materials. The work also investigates the effects of curing procedures on the ultimate phase morphology and mechanical properties of these thermoset-SB copolymer blends. It was found that at least 46 mol% of the epoxidation degree of the SB copolymer was needed to enable the miscibility of the modified block copolymer into the epoxy resin. Hence, an electron beam curing dose of ~50 kGy was needed to ensure the formation of micro- and nanostructured transparent blends. The micro- and nanophase-separated thermosets obtained were analyzed by optical as well as scanning and transmission electron microscopy. The mechanical properties of the blends were enhanced as shown by their impact strengths, indentation, hardness, and fracture toughness analyses, whereby the toughness values were found to mainly depend on the dose. Thus, we have developed a new route for designing dual-cured toughened micro- and nanostructured transparent epoxy thermosets with enhanced fracture toughness. © 2019 by the authors.
  • Item
    Temperature Scanning Stress Relaxation of an Autonomous Self-Healing Elastomer Containing Non-Covalent Reversible Network Junctions
    (Basel : MDPI, 2018-01-19) Das, Amit; Sallat, Aladdin; Böhme, Frank; Sarlin, Essi; Vuorinen, Jyrki; Vennemann, Norbert; Heinrich, Gert; Stöckelhuber, Klaus Werner
    In this work, we report about the mechanical relaxation characteristics of an intrinsically self-healable imidazole modified commercial rubber. This kind of self-healing rubber was prepared by melt mixing of 1-butyl imidazole with bromo-butyl rubber (bromine modified isoprene-isobutylene copolymer, BIIR). By this melt mixing process, the reactive allylic bromine of bromo-butyl rubber was converted into imidazole bromide salt. The resulting development of an ionic character to the polymer backbone leads to an ionic association of the groups which ultimately results to the formation of a network structure of the rubber chains. The modified BIIR thus behaves like a robust crosslinked rubber and shows unusual self-healing properties. The non-covalent reversible network has been studied in detail with respect to stress relaxation experiments, scanning electron microscopic and X-ray scattering.