Search Results

Now showing 1 - 3 of 3
  • Item
    An optical particle size spectrometer for aircraft-borne measurements in IAGOS-CARIBIC
    (München : European Geopyhsical Union, 2016) Hermann, Markus; Weigelt, Andreas; Assmann, Denise; Pfeifer, Sascha; Müller, Thomas; Conrath, Thomas; Voigtländer, Jens; Heintzenberg, Jost; Wiedensohler, Alfred; Martinsson, Bengt G.; Deshler, Terry; Brenninkmeijer, Carl A.M.; Zahn, Andreas
    The particle number size distribution is an important parameter to characterize the atmospheric aerosol and its influence on the Earth's climate. Here we describe a new optical particle size spectrometer (OPSS) for measurements of the accumulation mode particle number size distribution in the tropopause region on board a passenger aircraft (IAGOS-CARIBIC observatory: In-service Aircraft for a Global Observing System – Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container). A modified KS93 particle sensor from RION Co., Ltd., together with a new airflow system and a dedicated data acquisition system, is the key component of the CARIBIC OPSS. The instrument records individual particle pulse signal curves in the particle size range 130–1110 nm diameter (for a particle refractive index of 1.47-i0.006) together with a time stamp and thus allows the post-flight choice of the time resolution and the size distribution bin width. The CARIBIC OPSS has a 50 % particle detection diameter of 152 nm and a maximum asymptotic counting efficiency of 98 %. The instrument's measurement performance shows no pressure dependency and no particle coincidence for free tropospheric conditions. The size response function of the CARIBIC OPSS was obtained by a polystyrene latex calibration in combination with model calculations. Particle number size distributions measured with the new OPSS in the lowermost stratosphere agreed within a factor of 2 in concentration with balloon-borne measurements over western North America. Since June 2010 the CARIBIC OPSS is deployed once per month in the IAGOS-CARIBIC observatory.
  • Item
    Structure, variability and persistence of the submicrometre marine aerosol
    (Milton Park : Taylor & Francis, 2017) Heintzenberg, Jost; Birmili, Wolfram; Wiedensohler, Alfred; Nowak, Andreas; Tuch, Thomas
    Submicrometre dry number size distributions from four marine and one continental aerosol experiment were evaluatedjointly in the present study. In the marine experiments only data with back trajectories of at least 120 h without landcontact were used to minimize continental contamination. Log-normal functions were fitted to the size distributions.Basic statistics of the marine aerosol indicate a closed character of the size distribution at the lower size limit as opposedto an open character for corresponding continental data. Together with the infrequent occurrences of marine particlesbelow20 nmthis finding supports hypotheses and model results suggesting lowprobabilities of homogeneous nucleationin the marine boundary layer. The variability of submicrometre marine number concentrations was parametrized witha bimodal log-normal function that quantifies the probability of finding different number concentrations about a givenmedian value. Together with a four-modal log-normal approximation of the submicrometre marine size distributionitself, this model allows a statistical representation of the marine aerosol that facilitates comparison of experiments andvalidation of aerosol models. Autocorrelation at the one fixed marine site with a minimum of interruptions in timesseriesrevealed a strong size dependency of persistence in particle number concentration with the shortest persistenceat the smallest sizes. Interestingly, in the marine aerosol (at Cape Grim) persistence exhibits a size dependency thatlargely matches the modes in dg0, i.e. near the most frequent geometric mean diameters number concentrations aremost persistent. Over the continent, persistence of particle numbers is strongly constrained by diurnal meteorologicalprocesses and aerosol dynamics. Thus, no strong modal structure appears in the size-dependent persistence at Melpitz.As with the aerosol variability, marine aerosol processes in models of aerosol dynamics can be tested with these findings.
  • Item
    Aerosol number-size distributions during clear and fog periods in the summer high Arctic: 1991, 1996 and 2001
    (Milton Park : Taylor & Francis, 2017) Heintzenberg, Jost; Leck, Caroline; Birmili, Wolfram; Wehner, Birgit; Tjernström, Michael; Wiedensohler, Alfred
    The present study covers submicrometer aerosol size distribution data taken during three Arctic icebreaker expeditions in the summers of 1991, 1996 and 2001. The size distributions of all expeditions were compared in log-normally fitted form to the statistics of the marine number size distribution provided by Heintzenberg et al. (2004) yielding rather similar log-normal parameters of the modes. Statistics of the modal concentrations revealed strong concentration decreases of large accumulation mode particles with increasing length of time spent over the pack ice. The travel-time dependencies of both Aitken and ultrafine modes strongly indicate, as other studies did before, the occurrence of fine-particle sources in the inner Arctic. With two approaches evidence of fog-related aerosol source processeswas sought for in the data sets of 1996 and 2001 because they included fog drop size distributions. With increasing fog intensity modes in interstitial particle number concentrations appeared in particular in the size range around 80 nm that was nearly mode free in clear air. A second, dynamic approach revealed that Aitken mode concentrations increased strongly above their respective fog-period medians in both years before maximum drop numbers were reached in both years. We interpret the results of both approaches as strong indications of fog-related aerosol source processes as discussed in Leck and Bigg (1999) that need to be elucidated with further data from dedicated fog experiments in future Arctic expeditions in order to understand the life cycle of the aerosol over the high Arctic pack ice area.