Search Results

Now showing 1 - 4 of 4
  • Item
    New particle formation in the Svalbard region 2006-2015
    (Katlenburg-Lindau : EGU, 2017) Heintzenberg, Jost; Tunved, Peter; Galí, Martí; Leck, Caroline
    Events of new particle formation (NPF) were analyzed in a 10-year data set of hourly particle size distributions recorded on Mt. Zeppelin, Spitsbergen, Svalbard. Three different types of NPF events were identified through objective search algorithms. The first and simplest algorithm utilizes short-term increases in particle concentrations below 25 nm (PCT (percentiles) events). The second one builds on the growth of the sub-50 nm diameter median (DGR (diameter growth) events) and is most closely related to the classical "banana type" of event. The third and most complex, multiple-size approach to identifying NPF events builds on a hypothesis suggesting the concurrent production of polymer gel particles at several sizes below ca. 60 nm (MEV (multisize growth) events). As a first and general conclusion, we can state that NPF events are a summer phenomenon and not related to Arctic haze, which is a late winter to early spring feature. The occurrence of NPF events appears to be somewhat sensitive to the available data on precipitation. The seasonal distribution of solar flux suggests some photochemical control that may affect marine biological processes generating particle precursors and/or atmospheric photochemical processes that generate condensable vapors from precursor gases. Notably, the seasonal distribution of the biogenic methanesulfonate (MSA) follows that of the solar flux although it peaks before the maxima in NPF occurrence. A host of ancillary data and findings point to varying and rather complex marine biological source processes. The potential source regions for all types of new particle formation appear to be restricted to the marginal-ice and open-water areas between northeastern Greenland and eastern Svalbard. Depending on conditions, yet to be clarified new particle formation may become visible as short bursts of particles around 20 nm (PCT events), longer events involving condensation growth (DGR events), or extended events with elevated concentrations of particles at several sizes below 100 nm (MEV events). The seasonal distribution of NPF events peaks later than that of MSA and DGR, and in particular than that of MEV events, which reach into late summer and early fall with open, warm, and biologically active waters around Svalbard. Consequently, a simple model to describe the seasonal distribution of the total number of NPF events can be based on solar flux and sea surface temperature, representing environmental conditions for marine biological activity and condensation sink, controlling the balance between new particle nucleation and their condensational growth. Based on the sparse knowledge about the seasonal cycle of gel-forming marine microorganisms and their controlling factors, we hypothesize that the seasonal distribution of DGR and, more so, MEV events reflect the seasonal cycle of the gel-forming phytoplankton.
  • Item
    An optical particle size spectrometer for aircraft-borne measurements in IAGOS-CARIBIC
    (München : European Geopyhsical Union, 2016) Hermann, Markus; Weigelt, Andreas; Assmann, Denise; Pfeifer, Sascha; Müller, Thomas; Conrath, Thomas; Voigtländer, Jens; Heintzenberg, Jost; Wiedensohler, Alfred; Martinsson, Bengt G.; Deshler, Terry; Brenninkmeijer, Carl A.M.; Zahn, Andreas
    The particle number size distribution is an important parameter to characterize the atmospheric aerosol and its influence on the Earth's climate. Here we describe a new optical particle size spectrometer (OPSS) for measurements of the accumulation mode particle number size distribution in the tropopause region on board a passenger aircraft (IAGOS-CARIBIC observatory: In-service Aircraft for a Global Observing System – Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container). A modified KS93 particle sensor from RION Co., Ltd., together with a new airflow system and a dedicated data acquisition system, is the key component of the CARIBIC OPSS. The instrument records individual particle pulse signal curves in the particle size range 130–1110 nm diameter (for a particle refractive index of 1.47-i0.006) together with a time stamp and thus allows the post-flight choice of the time resolution and the size distribution bin width. The CARIBIC OPSS has a 50 % particle detection diameter of 152 nm and a maximum asymptotic counting efficiency of 98 %. The instrument's measurement performance shows no pressure dependency and no particle coincidence for free tropospheric conditions. The size response function of the CARIBIC OPSS was obtained by a polystyrene latex calibration in combination with model calculations. Particle number size distributions measured with the new OPSS in the lowermost stratosphere agreed within a factor of 2 in concentration with balloon-borne measurements over western North America. Since June 2010 the CARIBIC OPSS is deployed once per month in the IAGOS-CARIBIC observatory.
  • Item
    The atmospheric aerosol over Siberia, as seen from the 300 m ZOTTO tower
    (Milton Park : Taylor & Francis, 2017) Heintzenberg, Jost; Birmili, Wolfram; Theiss, Detlef; Kisilyakhov, Yegor
    This report describes a unique setup for aerosol measurements at the new long-term Tall Tower monitoring facility near Zotino, Siberia (ZOTTO). Through two inlets at 50 and 300 m aerosol particle number size distributions are measured since September 2006 in the size range 15–835 nanometer dry diameter. Until the end of May 2007 total number (N300) concentrations at 300 m height ranged between 400 cm-3 (5%) and 4000 cm-3 (95%) with a median of 1200 cm-3, which is rather high for a nearly uninhabited boreal forest region during the low productivity period of the year. Fitting 1-h average distributions with a maximum of four lognormal functions yielded frequent ultrafine modes below 20 nm at 50 m height than at 300 m, whereas the latter height more frequently showed an aged nucleation mode near 30 nm. The positions of Aitken (≈80 nm) and accumulation modes (≈210 nm) were very similar at both inlet heights, the very sharp latter one being the most frequent of all modes. The encouraging first results let us expect exciting newfindings during the summer period with frequent forest fires and secondary particle sources from vegetation emissions.
  • Item
    How to find bananas in the atmospheric aerosol': New approach for analyzing atmospheric nucleation and growth events
    (Milton Park : Taylor & Francis, 2017) Heintzenberg, Jost; Wehner, Birgit; Birmili, Wolfram
    We have devised a new search algorithm for secondary particle formation events, or ‘nucleation events’ in data sets of atmospheric particle size distributions. The search algorithm is simple and based on the investigation of 18 integral parameters of the particle size distribution, three of which were found to be most relevant for identifying nucleation events. The algorithm is tested using long-term size distribution data sets of high-size resolution observed at Melpitz, Hohenpeissenberg, and Leipzig, Germany, and Beijing, China, thereby covering a wide range of clean and polluted conditions. By specifying the particular training sets, the method can be used by other researchers with different data sets or different research goals. The same search approach could be applied to identify and analyze other systematic changes in size distribution such as during frontal passages or sand storms. As an example application of the new algorithm, the 50 strongest nucleation events (‘bananas’) at each of the four sites are analyzed statistically in terms of average changes of integral parameters of the particle size distribution.