Search Results

Now showing 1 - 10 of 16
Loading...
Thumbnail Image
Item

New particle formation in the Svalbard region 2006-2015

2017, Heintzenberg, Jost, Tunved, Peter, Galí, Martí, Leck, Caroline

Events of new particle formation (NPF) were analyzed in a 10-year data set of hourly particle size distributions recorded on Mt. Zeppelin, Spitsbergen, Svalbard. Three different types of NPF events were identified through objective search algorithms. The first and simplest algorithm utilizes short-term increases in particle concentrations below 25 nm (PCT (percentiles) events). The second one builds on the growth of the sub-50 nm diameter median (DGR (diameter growth) events) and is most closely related to the classical "banana type" of event. The third and most complex, multiple-size approach to identifying NPF events builds on a hypothesis suggesting the concurrent production of polymer gel particles at several sizes below ca. 60 nm (MEV (multisize growth) events). As a first and general conclusion, we can state that NPF events are a summer phenomenon and not related to Arctic haze, which is a late winter to early spring feature. The occurrence of NPF events appears to be somewhat sensitive to the available data on precipitation. The seasonal distribution of solar flux suggests some photochemical control that may affect marine biological processes generating particle precursors and/or atmospheric photochemical processes that generate condensable vapors from precursor gases. Notably, the seasonal distribution of the biogenic methanesulfonate (MSA) follows that of the solar flux although it peaks before the maxima in NPF occurrence. A host of ancillary data and findings point to varying and rather complex marine biological source processes. The potential source regions for all types of new particle formation appear to be restricted to the marginal-ice and open-water areas between northeastern Greenland and eastern Svalbard. Depending on conditions, yet to be clarified new particle formation may become visible as short bursts of particles around 20 nm (PCT events), longer events involving condensation growth (DGR events), or extended events with elevated concentrations of particles at several sizes below 100 nm (MEV events). The seasonal distribution of NPF events peaks later than that of MSA and DGR, and in particular than that of MEV events, which reach into late summer and early fall with open, warm, and biologically active waters around Svalbard. Consequently, a simple model to describe the seasonal distribution of the total number of NPF events can be based on solar flux and sea surface temperature, representing environmental conditions for marine biological activity and condensation sink, controlling the balance between new particle nucleation and their condensational growth. Based on the sparse knowledge about the seasonal cycle of gel-forming marine microorganisms and their controlling factors, we hypothesize that the seasonal distribution of DGR and, more so, MEV events reflect the seasonal cycle of the gel-forming phytoplankton.

Loading...
Thumbnail Image
Item

Marine nanogels as a source of atmospheric nanoparticles in the high Arctic

2013, Karl, Matthias, Leck, Caroline, Coz, Esther, Heintzenberg, Jost

The high Arctic (north of 80°N) in summer is a region characterized by clean air and low abundances of preexisting particles. Marine colloidal nanogels i.e., assembled dissolved organic carbohydrate polymer networks have recently been confirmed to be present in both airborne particles and cloud water over the Arctic pack ice area. A novel route to atmospheric nanoparticles that appears to be operative in the high Arctic is suggested. It involves the injection of marine granular nanogels into the air from evaporating fog and cloud droplets, and is supported by observational and theoretical evidence obtained from a case study. Statistical analysis of the aerosol size distribution data recorded in the years 1991, 1996, 2001, and 2008 classified 75 nanoparticle events - covering 17% of the observed time period - as nanogel-type events, characterized by the spontaneous appearance of several distinct size bands below 200 nm diameter.

Loading...
Thumbnail Image
Item

Arctic haze over Central Europe

2017, Heintzenberg, Jost, Tuch, Thomas, Wehner, Birgit, Wiedensohler, Alfred, Wex, Heike, Ansmann, Albert, Mattis, Ina, Müller, Detlef, Wendisch, Manfred, Eckhardt, Sabine, Stohl, Andreas

An extraordinary aerosol situation over Leipzig, Germany in April 2002 was investigated with a comprehensive set of ground-based volumetric and columnar aerosol data, combined with aerosol profiles from lidar, meteorological data from radiosondes and air mass trajectory calculations. Air masses were identified to stem from the Arctic, partly influenced by the greater Moscow region. An evaluation of ground-based measurements of aerosol size distributions during these periods showed that the number concentrations below about 70 nm in diameter were below respective long-term average data, while number, surface and volume concentrations of the particles larger than about 70 nm in diameter were higher than the long-term averages. The lidar aerosol profiles showed that the imported aerosol particles were present up to about 3 km altitude. The particle optical depth was up to 0.45 at 550 nm wavelength. With a one-dimensional spectral radiative transfer model top of the atmosphere (TOA) radiative forcing of the aerosol layer was estimated for a period with detailed vertical information. Solar aerosol radiative forcing values between −23 and −38 W m−2 were calculated, which are comparable to values that have been reported in heavily polluted continental plumes outside the respective source regions. The present report adds weight to previous findings of aerosol import to Europe, pointing to the need for attributing the three-dimensional aerosol burden to natural and anthropogenic sources as well as to aerosol imports from adjacent or distant source regions. In the present case, the transport situation is further complicated by forward trajectories, indicating that some of the observed Arctic haze may have originated in Central Europe. This aerosolwas transported to the European Arctic before being re-imported in the modified and augmented form to its initial source region.

Loading...
Thumbnail Image
Item

Aerosol number-size distributions during clear and fog periods in the summer high Arctic: 1991, 1996 and 2001

2017, Heintzenberg, Jost, Leck, Caroline, Birmili, Wolfram, Wehner, Birgit, Tjernström, Michael, Wiedensohler, Alfred

The present study covers submicrometer aerosol size distribution data taken during three Arctic icebreaker expeditions in the summers of 1991, 1996 and 2001. The size distributions of all expeditions were compared in log-normally fitted form to the statistics of the marine number size distribution provided by Heintzenberg et al. (2004) yielding rather similar log-normal parameters of the modes. Statistics of the modal concentrations revealed strong concentration decreases of large accumulation mode particles with increasing length of time spent over the pack ice. The travel-time dependencies of both Aitken and ultrafine modes strongly indicate, as other studies did before, the occurrence of fine-particle sources in the inner Arctic. With two approaches evidence of fog-related aerosol source processeswas sought for in the data sets of 1996 and 2001 because they included fog drop size distributions. With increasing fog intensity modes in interstitial particle number concentrations appeared in particular in the size range around 80 nm that was nearly mode free in clear air. A second, dynamic approach revealed that Aitken mode concentrations increased strongly above their respective fog-period medians in both years before maximum drop numbers were reached in both years. We interpret the results of both approaches as strong indications of fog-related aerosol source processes as discussed in Leck and Bigg (1999) that need to be elucidated with further data from dedicated fog experiments in future Arctic expeditions in order to understand the life cycle of the aerosol over the high Arctic pack ice area.

Loading...
Thumbnail Image
Item

An optical particle size spectrometer for aircraft-borne measurements in IAGOS-CARIBIC

2016, Hermann, Markus, Weigelt, Andreas, Assmann, Denise, Pfeifer, Sascha, Müller, Thomas, Conrath, Thomas, Voigtländer, Jens, Heintzenberg, Jost, Wiedensohler, Alfred, Martinsson, Bengt G., Deshler, Terry, Brenninkmeijer, Carl A.M., Zahn, Andreas

The particle number size distribution is an important parameter to characterize the atmospheric aerosol and its influence on the Earth's climate. Here we describe a new optical particle size spectrometer (OPSS) for measurements of the accumulation mode particle number size distribution in the tropopause region on board a passenger aircraft (IAGOS-CARIBIC observatory: In-service Aircraft for a Global Observing System – Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container). A modified KS93 particle sensor from RION Co., Ltd., together with a new airflow system and a dedicated data acquisition system, is the key component of the CARIBIC OPSS. The instrument records individual particle pulse signal curves in the particle size range 130–1110 nm diameter (for a particle refractive index of 1.47-i0.006) together with a time stamp and thus allows the post-flight choice of the time resolution and the size distribution bin width. The CARIBIC OPSS has a 50 % particle detection diameter of 152 nm and a maximum asymptotic counting efficiency of 98 %. The instrument's measurement performance shows no pressure dependency and no particle coincidence for free tropospheric conditions. The size response function of the CARIBIC OPSS was obtained by a polystyrene latex calibration in combination with model calculations. Particle number size distributions measured with the new OPSS in the lowermost stratosphere agreed within a factor of 2 in concentration with balloon-borne measurements over western North America. Since June 2010 the CARIBIC OPSS is deployed once per month in the IAGOS-CARIBIC observatory.

Loading...
Thumbnail Image
Item

Near-global aerosol mapping in the upper troposphere and lowermost stratosphere with data from the CARIBIC project

2017, Heintzenberg, Jost, Hermann, Markus, Weigelt, Andreas, Kapustin, Vladimir, Anderson, Bruce, Thornhill, Kenneth, Van Velthoven, Peter, Zahn, Andreas, Brenninkmeijer, Carl

This study extrapolates aerosol data of the CARIBIC project from 1997 until June 2008 in along trajectories to compose large-scale maps and vertical profiles of submicrometre particle concentrations in the upper troposphere and lowermost stratosphere (UT/LMS). The extrapolation was validated by comparing extrapolated values with CARIBIC data measured near the respective trajectory position and by comparing extrapolated CARIBIC data to measurements by other experiments near the respective trajectory positions. Best agreement between extrapolated and measured data is achieved with particle lifetimes longer than the maximum length of used trajectories. The derived maps reveal regions of strong and frequent new particle formation, namely the Tropical Central and Western Africa with the adjacent Atlantic, South America, the Caribbean and Southeast Asia. These regions of particle formation coincide with those of frequent deep convective clouds. Vertical particle concentration profiles for the troposphere and the stratosphere confirm statistically previous results indicating frequent new particle formation in the tropopause region. There was no statistically significant increase in Aitken mode particle concentration between the first period of CARIBIC operation, 1997–2002, and the second period, 2004–2009. However, a significant increase in concentration occurred within the latter period when considering it in isolation.

Loading...
Thumbnail Image
Item

New insights in sources of the sub-micrometre aerosol at Mt. Zeppelin observatory (Spitsbergen) in the year 2015

2019, Karl, Matthias, Leck, Caroline, Rad, Farshid Mashayekhy, Bäcklund, Are, Lopez-Aparicio, Susana, Heintzenberg, Jost

In order to evaluate the potential impact of the Arctic anthropogenic emission sources it is essential to understand better the natural aerosol sources of the inner Arctic and the atmospheric processing of the aerosols during their transport in the Arctic atmosphere. A 1-year time series of chemically specific measurements of the sub-micrometre aerosol during 2015 has been taken at the Mt. Zeppelin observatory in the European Arctic. A source apportionment study combined measured molecular tracers as source markers, positive matrix factorization, analysis of the potential source distribution and auxiliary information from satellite data and ground-based observations. The annual average sub-micrometre mass was apportioned to regional background secondary sulphate (56%), sea spray (17%), biomass burning (15%), secondary nitrate (5.8%), secondary marine biogenic (4.5%), mixed combustion (1.6%), and two types of marine gel sources (together 0.7%). Secondary nitrate aerosol mainly contributed towards the end of summer and during autumn. During spring and summer, the secondary marine biogenic factor reached a contribution of up to 50% in some samples. The most likely origin of the mixed combustion source is due to oil and gas extraction activities in Eastern Siberia. The two marine polymer gel sources predominantly occurred in autumn and winter. The small contribution of the marine gel sources at Mt. Zeppelin observatory in summer as opposed to regions closer to the North Pole is attributed to differences in ocean biology, vertical distribution of phytoplankton, and the earlier start of the summer season.

Loading...
Thumbnail Image
Item

Aerosol pollution maps and trends over Germany with hourly data at four rural background stations from 2009 to 2018

2020, Heintzenberg, Jost, Birmili, Wolfram, Hellack, Bryan, Spindler, Gerald, Tuch, Thomas, Wiedensohler, Alfred

A total of 10 years of hourly aerosol and gas data at four rural German stations have been combined with hourly back trajectories to the stations and inventories of the European Emissions Database for Global Atmospheric Research (EDGAR), yielding pollution maps over Germany of PM10, particle number concentrations, and equivalent black carbon (eBC). The maps reflect aerosol emissions modified with atmospheric processes during transport between sources and receptor sites. Compared to emission maps, strong western European emission centers do not dominate the downwind concentrations because their emissions are reduced by atmospheric processes on the way to the receptor area. PM10, eBC, and to some extent also particle number concentrations are rather controlled by emissions from southeastern Europe from which pollution transport often occurs under drier conditions. Newly formed particles are found in air masses from a broad sector reaching from southern Germany to western Europe, which we explain with gaseous particle precursors coming with little wet scavenging from this region. Annual emissions for 2009 of PM10, BC, SO2, and NOx were accumulated along each trajectory and compared with the corresponding measured time series. The agreement of each pair of time series was optimized by varying monthly factors and annual factors on the 2009 emissions. This approach yielded broader summer emission minima than published values that were partly displaced from the midsummer positions. The validity of connecting the ambient concentration and emission of particulate pollution was tested by calculating temporal changes in eBC for subsets of back trajectories passing over two separate prominent emission regions, region A to the northwest and B to the southeast of the measuring stations. Consistent with reported emission data the calculated emission decreases over region A are significantly stronger than over region B.

Loading...
Thumbnail Image
Item

Mapping the aerosol over Eurasia from the Zotino tall tower

2013, Heintzenberg, Jost, Birmili, Wolfram, Seifert, Patric, Panov, Alexey, Chi, Xuguang, Andreae, Meinrat O.

The present study covers more than 5 yr corresponding to more than 40 000 hours of particle and gas data measured at the Siberian tall tower Zotino Tall Tower (ZOTTO) (60.8°N; 89.35°E). Extrapolated along 10-d back trajectories, the ZOTTO measurements cover large parts of the Eurasian land mass. Mapping the extrapolated ZOTTO data points to major anthropogenic source regions and Siberian fire regions, consistent with emission data for CO and vegetation fires. Middle East mid-latitude sources stand out strongly and possibly emissions from Northern China may be seen at times from ZOTTO. The maps of measured light scattering and absorption characteristics support the interpretation of different source types. Three clusters of substantially different submicrometer particle size distributions were found, the maps of which also could be related to major aerosol source regions.

Loading...
Thumbnail Image
Item

Structure, variability and persistence of the submicrometre marine aerosol

2017, Heintzenberg, Jost, Birmili, Wolfram, Wiedensohler, Alfred, Nowak, Andreas, Tuch, Thomas

Submicrometre dry number size distributions from four marine and one continental aerosol experiment were evaluatedjointly in the present study. In the marine experiments only data with back trajectories of at least 120 h without landcontact were used to minimize continental contamination. Log-normal functions were fitted to the size distributions.Basic statistics of the marine aerosol indicate a closed character of the size distribution at the lower size limit as opposedto an open character for corresponding continental data. Together with the infrequent occurrences of marine particlesbelow20 nmthis finding supports hypotheses and model results suggesting lowprobabilities of homogeneous nucleationin the marine boundary layer. The variability of submicrometre marine number concentrations was parametrized witha bimodal log-normal function that quantifies the probability of finding different number concentrations about a givenmedian value. Together with a four-modal log-normal approximation of the submicrometre marine size distributionitself, this model allows a statistical representation of the marine aerosol that facilitates comparison of experiments andvalidation of aerosol models. Autocorrelation at the one fixed marine site with a minimum of interruptions in timesseriesrevealed a strong size dependency of persistence in particle number concentration with the shortest persistenceat the smallest sizes. Interestingly, in the marine aerosol (at Cape Grim) persistence exhibits a size dependency thatlargely matches the modes in dg0, i.e. near the most frequent geometric mean diameters number concentrations aremost persistent. Over the continent, persistence of particle numbers is strongly constrained by diurnal meteorologicalprocesses and aerosol dynamics. Thus, no strong modal structure appears in the size-dependent persistence at Melpitz.As with the aerosol variability, marine aerosol processes in models of aerosol dynamics can be tested with these findings.