Search Results

Now showing 1 - 6 of 6
  • Item
    Optical Sectioning and High Resolution in Single-Slice Structured Illumination Microscopy by Thick Slice Blind-SIM Reconstruction
    (San Francisco, California, US : PLOS, 2015) Jost, Aurélie; Tolstik, Elen; Feldmann, Polina; Wicker, Kai; Sentenac, Anne; Heintzmann, Rainer; Degtyar, Vadim E.
    The microscope image of a thick fluorescent sample taken at a given focal plane is plagued by out-of-focus fluorescence and diffraction limited resolution. In this work, we show that a single slice of Structured Illumination Microscopy (two or three beam SIM) data can be processed to provide an image exhibiting tight sectioning and high transverse resolution. Our reconstruction algorithm is adapted from the blind-SIM technique which requires very little knowledge of the illumination patterns. It is thus able to deal with illumination distortions induced by the sample or illumination optics. We named this new algorithm thick slice blind-SIM because it models a three-dimensional sample even though only a single two-dimensional plane of focus was measured.
  • Item
    A Metabolic Probe-Enabled Strategy Reveals Uptake and Protein Targets of Polyunsaturated Aldehydes in the Diatom Phaeodactylum tricornutum
    (San Francisco, California, US : PLOS, 2015) Wolfram, Stefanie; Wielsch, Natalie; Hupfer, Yvonne; Mönch, Bettina; Lu-Walther, Hui-Wen; Heintzmann, Rainer; Werz, Oliver; Svatoš, Aleš; Pohnert, Georg; Harder, Tilmann
    Diatoms are unicellular algae of crucial importance as they belong to the main primary producers in aquatic ecosystems. Several diatom species produce polyunsaturated aldehydes (PUAs) that have been made responsible for chemically mediated interactions in the plankton. PUA-effects include chemical defense by reducing the reproductive success of grazing copepods, allelochemical activity by interfering with the growth of competing phytoplankton and cell to cell signaling. We applied a PUA-derived molecular probe, based on the biologically highly active 2,4-decadienal, with the aim to reveal protein targets of PUAs and affected metabolic pathways. By using fluorescence microscopy, we observed a substantial uptake of the PUA probe into cells of the diatom Phaeodactylum tricornutum in comparison to the uptake of a structurally closely related control probe based on a saturated aldehyde. The specific uptake motivated a chemoproteomic approach to generate a qualitative inventory of proteins covalently targeted by the α,β,γ,δ-unsaturated aldehyde structure element. Activity-based protein profiling revealed selective covalent modification of target proteins by the PUA probe. Analysis of the labeled proteins gave insights into putative affected molecular functions and biological processes such as photosynthesis including ATP generation and catalytic activity in the Calvin cycle or the pentose phosphate pathway. The mechanism of action of PUAs involves covalent reactions with proteins that may result in protein dysfunction and interference of involved pathways.
  • Item
    Nonlinear Structured Illumination Using a Fluorescent Protein Activating at the Readout Wavelength
    (San Francisco, California, US : PLOS, 2016) Lu-Walther, Hui-Wen; Hou, Wenya; Kielhorn, Martin; Arai, Yoshiyuki; Nagai, Takeharu; Kessels, Michael M.; Qualmann, Britta; Heintzmann, Rainer
    Structured illumination microscopy (SIM) is a wide-field technique in fluorescence microscopy that provides fast data acquisition and two-fold resolution improvement beyond the Abbe limit. We observed a further resolution improvement using the nonlinear emission response of a fluorescent protein. We demonstrated a two-beam nonlinear structured illumination microscope by introducing only a minor change into the system used for linear SIM (LSIM). To achieve the required nonlinear dependence in nonlinear SIM (NL-SIM) we exploited the photoswitching of the recently introduced fluorophore Kohinoor. It is particularly suitable due to its positive contrast photoswitching characteristics. Contrary to other reversibly photoswitchable fluorescent proteins which only have high photostability in living cells, Kohinoor additionally showed little degradation in fixed cells over many switching cycles.
  • Item
    One-shot phase-recovery using a cellphone RGB camera on a Jamin-Lebedeff microscope
    (San Francisco, California, US : PLOS, 2019) Diederich, Benedict; Marsikova, Barbora; Amos, Brad; Heintzmann, Rainer
    Jamin-Lebedeff (JL) polarization interference microscopy is a classical method for determining the change in the optical path of transparent tissues. Whilst a differential interference contrast (DIC) microscopy interferes an image with itself shifted by half a point spread function, the shear between the object and reference image in a JL-microscope is about half the field of view. The optical path difference (OPD) between the sample and reference region (assumed to be empty) is encoded into a color by white-light interference. From a color-table, the Michel-Levy chart, the OPD can be deduced. In cytology JL-imaging can be used as a way to determine the OPD which closely corresponds to the dry mass per area of cells in a single image. Like in other interference microscopy methods (e.g. holography), we present a phase retrieval method relying on single-shot measurements only, thus allowing real-time quantitative phase measurements. This is achieved by adding several customized 3D-printed parts (e.g. rotational polarization-filter holders) and a modern cellphone with an RGB-camera to the Jamin-Lebedeff setup, thus bringing an old microscope back to life. The algorithm is calibrated using a reference image of a known phase object (e.g. optical fiber). A gradient-descent based inverse problem generates an inverse look-up-table (LUT) which is used to convert the measured RGB signal of a phase-sample into an OPD. To account for possible ambiguities in the phase-map or phase-unwrapping artifacts we introduce a total-variation based regularization. We present results from fixed and living biological samples as well as reference samples for comparison.
  • Item
    Bessel beam CARS of axially structured samples
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Heuke, Sandro; Zheng, Juanjuan; Akimov, Denis; Heintzmann, Rainer; Schmitt, Michael; Popp, Jürgen
    We report about a Bessel beam CARS approach for axial profiling of multi-layer structures. This study presents an experimental implementation for the generation of CARS by Bessel beam excitation using only passive optical elements. Furthermore, an analytical expression is provided describing the generated anti-Stokes field by a homogeneous sample. Based on the concept of coherent transfer functions, the underling resolving power of axially structured geometries is investigated. It is found that through the non-linearity of the CARS process in combination with the folded illumination geometry continuous phase-matching is achieved starting from homogeneous samples up to spatial sample frequencies at twice of the pumping electric field wave. The experimental and analytical findings are modeled by the implementation of the Debye Integral and scalar Green function approach. Finally, the goal of reconstructing an axially layered sample is demonstrated on the basis of the numerically simulated modulus and phase of the anti-Stokes far-field radiation pattern.
  • Item
    Ultrafast in cellulo photoinduced dynamics processes of the paradigm molecular light switch [Ru(bpy)2dppz]2+
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) De la Cadena, Alejandro; Davydova, Dar’ya; Tolstik, Tatiana; Reichardt, Christian; Shukla, Sapna; Akimov, Denis; Heintzmann, Rainer; Popp, Jürgen; Dietzek, Benjamin
    An in cellulo study of the ultrafast excited state processes in the paradigm molecular light switch [Ru(bpy)2dppz]2+ by localized pump-probe spectroscopy is reported for the first time. The localization of [Ru(bpy)2dppz]2+ in HepG2 cells is verified by emission microscopy and the characteristic photoinduced picosecond dynamics of the molecular light switch is observed in cellulo. The observation of the typical phosphorescence stemming from a 3MLCT state suggests that the [Ru(bpy)2dppz]2+ complex intercalates with the DNA in the nucleus. The results presented for this benchmark coordination compound reveal the necessity to study the photoinduced processes in coordination compounds for intracellular use, e.g. as sensors or as photodrugs, in the actual biological target environment in order to derive a detailed molecular mechanistic understanding of the excited-state properties of the systems in the actual biological target environment.