Search Results

Now showing 1 - 2 of 2
  • Item
    cellSTORM - Cost-effective Super-Resolution on a Cellphone using dSTORM
    (San Francisco : Public Library of Science, 2019) Diederich, Benedict; Then, Patrick; Jügler, Alexander; Förster, Ronny; Heintzmann, Rainer
    High optical resolution in microscopy usually goes along with costly hardware components, such as lenses, mechanical setups and cameras. Several studies proved that Single Molecular Localization Microscopy can be made affordable, relying on off-the-shelf optical components and industry grade CMOS cameras. Recent technological advantages have yielded consumer-grade camera devices with surprisingly good performance. The camera sensors of smartphones have benefited of this development. Combined with computing power smartphones provide a fantastic opportunity for “imaging on a budget”. Here we show that a consumer cellphone is capable of optical super-resolution imaging by (direct) Stochastic Optical Reconstruction Microscopy (dSTORM), achieving optical resolution better than 80 nm. In addition to the use of standard reconstruction algorithms, we used a trained image-to-image generative adversarial network (GAN) to reconstruct video sequences under conditions where traditional algorithms provide sub-optimal localization performance directly on the smartphone. We believe that “cellSTORM” paves the way to make super-resolution microscopy not only affordable but available due to the ubiquity of cellphone cameras.High optical resolution in microscopy usually goes along with costly hardware components, such as lenses, mechanical setups and cameras. Several studies proved that Single Molecular Localization Microscopy can be made affordable, relying on off-the-shelf optical components and industry grade CMOS cameras. Recent technological advantages have yielded consumer-grade camera devices with surprisingly good performance. The camera sensors of smartphones have benefited of this development. Combined with computing power smartphones provide a fantastic opportunity for “imaging on a budget”. Here we show that a consumer cellphone is capable of optical super-resolution imaging by (direct) Stochastic Optical Reconstruction Microscopy (dSTORM), achieving optical resolution better than 80 nm. In addition to the use of standard reconstruction algorithms, we used a trained image-to-image generative adversarial network (GAN) to reconstruct video sequences under conditions where traditional algorithms provide sub-optimal localization performance directly on the smartphone. We believe that “cellSTORM” paves the way to make super-resolution microscopy not only affordable but available due to the ubiquity of cellphone cameras.
  • Item
    Video-rate multi-color structured illumination microscopy with simultaneous real-time reconstruction
    (Berlin : Nature Publishing, 2019) Markwirth, A; Lachetta, Mario; Mönkemöller, V.; Heintzmann, Rainer; Hübner, Wolfgang; Huser, Thomas; Müller, Marcel
    Super-resolved structured illumination microscopy (SR-SIM) is among the fastest fluorescence microscopy techniques capable of surpassing the optical diffraction limit. Current custom-build instruments are able to deliver two-fold resolution enhancement with high acquisition speed. SR-SIM is usually a two-step process, with raw-data acquisition and subsequent, time-consuming post-processing for image reconstruction. In contrast, wide-field and (multi-spot) confocal techniques produce high-resolution images instantly. Such immediacy is also possible with SR-SIM, by tight integration of a video-rate capable SIM with fast reconstruction software. Here we present instant SR-SIM by VIGOR (Video-rate Immediate GPU-accelerated Open-Source Reconstruction). We demonstrate multi-color SR-SIM at video frame-rates, with less than 250 ms delay between measurement and reconstructed image display. This is achieved by modifying and extending high-speed SR-SIM image acquisition with a new, GPU-enhanced, network-enabled image-reconstruction software. We demonstrate high-speed surveying of biological samples in multiple colors and live imaging of moving mitochondria as an example of intracellular dynamics.