Search Results

Now showing 1 - 2 of 2
  • Item
    Detours around basin stability in power networks
    (Bristol : Institute of Physics Publishing, 2014) Schultz, P.; Heitzig, J.; Kurths, J.
    To analyse the relationship between stability against large perturbations and topological properties of a power transmission grid, we employ a statistical analysis of a large ensemble of synthetic power grids, looking for significant statistical relationships between the single-node basin stability measure and classical as well as tailormade weighted network characteristics. This method enables us to predict poor values of single-node basin stability for a large extent of the nodes, offering a node-wise stability estimation at low computational cost. Further, we analyse the particular function of certain network motifs to promote or degrade the stability of the system. Here we uncover the impact of so-called detour motifs on the appearance of nodes with a poor stability score and discuss the implications for power grid design.
  • Item
    Potentials and limits to basin stability estimation
    (Bristol : Institute of Physics Publishing, 2017) Schultz, P.; Menck, P.J.; Heitzig, J.; Kurths, J.
    Stability assessment methods for dynamical systems have recently been complemented by basin stability and derived measures, i.e. probabilistic statements whether systems remain in a basin of attraction given a distribution of perturbations. Their application requires numerical estimation via Monte Carlo sampling and integration of differential equations. Here, we analyse the applicability of basin stability to systems with basin geometries that are challenging for this numerical method, having fractal basin boundaries and riddled or intermingled basins of attraction. We find that numerical basin stability estimation is still meaningful for fractal boundaries but reaches its limits for riddled basins with holes.